Unprecedented hetero-geometric discrete copper(II) complexes: Crystal structure and bio-mimicking of Catecholase activity
暂无分享,去创建一个
R. Kadam | A. Choudhury | H. Yadav | D. Dey | Bhaskar Biswas | M. Maji | A. De | V. Rane
[1] Partha Sarathi Guin,et al. Design of a mononuclear copper(II)-phenanthroline complex: Catechol oxidation, DNA cleavage and antitumor properties , 2016 .
[2] S. Pal,et al. Ligand centered radical pathway in catechol oxidase activity with a trinuclear zinc-based model: synthesis, structural characterization and luminescence properties. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[3] P. K. Basu,et al. Synthesis, crystal structure and catecholase activity of a Ni(II) complex derived from a tetradentate Schiff base ligand , 2014, Proceedings of the Indian Academy of sciences. Chemical sciences.
[4] M. A. Akbarsha,et al. A Trinuclear Zinc–Schiff Base Complex: Biocatalytic Activity and Cytotoxicity , 2014 .
[5] N. Aliaga-Alcalde,et al. Mechanistic insight on the catecholase activity of dinuclear copper complexes with distant metal centers. , 2012, Dalton transactions.
[6] Sohini Sarkar,et al. Heterobridged dinuclear, tetranuclear, dinuclear-based 1-d, and heptanuclear-based 1-D complexes of copper(II) derived from a dinucleating ligand: syntheses, structures, magnetochemistry, spectroscopy, and catecholase activity. , 2011, Inorganic chemistry.
[7] Richard J. Gildea,et al. OLEX2: a complete structure solution, refinement and analysis program , 2009 .
[8] M. Giorgi,et al. Molecular structure and catechol oxidase activity of a new copper(I) complex with sterically crowded monodentate N-donor ligand. , 2009, Journal of inorganic biochemistry.
[9] G. Sheldrick. A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.
[10] S. Youngme,et al. Crystal structures and electronic properties of three fluxional [Cu(di-2-pyridylamine)2(OXO)]Y complexes , 2007 .
[11] H. Pritzkow,et al. Tuning the activity of catechol oxidase model complexes by geometric changes of the dicopper core. , 2002, Chemistry.
[12] L. Simándi. Advances in catalytic activation of dioxygen by metal complexes , 2002 .
[13] Heinz Decker,et al. Wie funktioniert die Tyrosinase? Neue Einblicke aus Modellchemie und Strukturbiologie , 2000 .
[14] J. Sacchettini,et al. Catechol oxidase - structure and activity. , 1999, Current opinion in structural biology.
[15] K. Markides,et al. Crystal Structure and Spectroscopic Properties of the Bis[(S-thiocyanate) (2,2'-dipyridylamine)] Copper(II) Complex. , 1999 .
[16] James C. Sacchettini,et al. Crystal structure of a plant catechol oxidase containing a dicopper center , 1998, Nature Structural Biology.
[17] B. Krebs,et al. Biochemical and spectroscopic characterization of catechol oxidase from sweet potatoes (Ipomoea batatas) containing a type‐3 dicopper center 1 , 1998, FEBS letters.
[18] E. Solomon,et al. Multicopper Oxidases and Oxygenases. , 1996, Chemical reviews.
[19] W. Haase,et al. Structural and Functional Models for the Dinuclear Copper Active Site in Catechol Oxidases: Syntheses, X-ray Crystal Structures, Magnetic and Spectral Properties, and X-ray Absorption Spectroscopic Studies in Solid State and in Solution. , 1996, Inorganic chemistry.
[20] F. Hartl. Spectroscopic Characterization of Some Unstable ortho-Semiquinone and ortho-Quinone Complexes of MnI by Variable-Temperature Thin-Layer Spectroeclectro-chemistry at Optically Transparent Electrodes , 1995 .
[21] J. Sletten,et al. Coordination Geometries in Bis(di-2-pyridylamine)copper(II) Complexes. Crystal Structures of [CuL2](PF6)2, [CuL2(NO3)2] and [CuL2(NCS)1.5(ClO4)0.5][CuL2(NCS)]2(ClO4)2 (L = Di-2-pyridylamine). , 1993 .
[22] S. Tsuruya,et al. Cobalt(II) chelate catalyzed oxidation of 3,5-di-tert-butylcatechol , 1986 .
[23] M. Nardelli,et al. Parst: A system of fortran routines for calculating molecular structure parameters from results of crystal structure analyses , 1983, Comput. Chem..