The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence

[1]  G. Laslett,et al.  OPTICAL DATING OF SINGLE AND MULTIPLE GRAINS OF QUARTZ FROM JINMIUM ROCK SHELTER, NORTHERN AUSTRALIA: PART I, EXPERIMENTAL DESIGN AND STATISTICAL MODELS* , 1999 .

[2]  A. Murray,et al.  COMPARISON OF REGENERATIVE-DOSE SINGLE-ALIQUOT AND MULTIPLE-ALIQUOT (SARA)PROTOCOLS USING HEATED QUARTZ FROM ARCHAEOLOGICAL SITES , 1999 .

[3]  G. Caitcheon,et al.  The distribution of apparent dose as determined by Optically Stimulated Luminescence in small aliquots of fluvial quartz: Implications for dating young sediments , 1998 .

[4]  A. Murray,et al.  Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol , 1998 .

[5]  G. Laslett,et al.  Optical and radiocarbon dating at Jinmium rock shelter in northern Australia , 1998, Nature.

[6]  A. Murray,et al.  Determining the burial time of single grains of quartz using optically stimulated luminescence , 1997 .

[7]  A. Murray,et al.  Disequilibria in the uranium decay series in sedimentary deposits at Allen's cave, nullarbor plain, Australia: Implications for dose rate determinations , 1997 .

[8]  G. Duller Recent developments in luminescence dating of Quaternary sediments , 1996 .

[9]  I. Prosser,et al.  Holocene valley aggradation and gully erosion in headwater catchments, south-eastern highlands of Australia , 1994 .

[10]  M. Lamothe,et al.  Natural IRSL intensities and apparent luminescence ages of single feldspar grains extracted from partially bleached sediments , 1994 .

[11]  E. Rhodes,et al.  Zeroing of the OSL signal in quartz from young glaciofluvial sediments , 1994 .

[12]  Sheng‐Hua Li Optical dating: Insufficiently bleached sediments , 1994 .

[13]  J. Ollerhead,et al.  Luminescence dating of sediments from Buctouche Spit, New Brunswick , 1994 .

[14]  Rex Galbraith,et al.  Graphical display of estimates having differing standard errors , 1988 .

[15]  Paul Martin,et al.  Analysis for naturally occuring radionuclides at environmental concentrations by gamma spectrometry , 1987 .

[16]  A. Singhvi,et al.  Thermoluminescence dating of Quaternary red-sand beds: a case study of coastal dunes in Sri Lanka , 1986 .

[17]  V. Mejdahl THERMOLUMINESCENCE DATING: BETA‐DOSE ATTENUATION IN QUARTZ GRAINS , 1979 .

[18]  J. Feathers,et al.  An introduction to optical dating , 2000 .

[19]  A. Murray,et al.  The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments , 1996 .

[20]  G. Caitcheon,et al.  Measurement of equivalent doses in quartz from contemporary water-lain sediments using optically stimulated luminescence , 1995 .

[21]  G. Duller Luminescence dating of poorly bleached sediments from Scotland , 1994 .

[22]  P. Reimer,et al.  Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program , 1993, Radiocarbon.

[23]  S. Stokes Optical dating of young (modern) sediments using quartz: Results from a selection of depositional environments , 1992 .

[24]  Rex Galbraith,et al.  The radial plot: Graphical assessment of spread in ages , 1990 .

[25]  J. Prescott,et al.  Cosmic ray and gamma ray dosimetry for TL and ESR , 1988 .

[26]  M. L. W. Thewalt,et al.  Optical dating of sediments , 1985, Nature.

[27]  J. R. Prescott,et al.  The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependences , 1982 .