Thermal scanning probe lithography—a review

Fundamental aspects and state-of-the-art results of thermal scanning probe lithography (t-SPL) are reviewed here. t-SPL is an emerging direct-write nanolithography method with many unique properties which enable original or improved nano-patterning in application fields ranging from quantum technologies to material science. In particular, ultrafast and highly localized thermal processing of surfaces can be achieved through the sharp heated tip in t-SPL to generate high-resolution patterns. We investigate t-SPL as a means of generating three types of material interaction: removal, conversion, and addition. Each of these categories is illustrated with process parameters and application examples, as well as their respective opportunities and challenges. Our intention is to provide a knowledge base of t-SPL capabilities and current limitations and to guide nanoengineers to the best-fitting approach of t-SPL for their challenges in nanofabrication or material science. Many potential applications of nanoscale modifications with thermal probes still wait to be explored, in particular when one can utilize the inherently ultrahigh heating and cooling rates. Thermal scanning probe lithography is reviewed in the context of material removal, conversion and deposition. Scanning probe lithography has long been a promising technique for direct-write nanoscale patterning on surfaces. However, while the technique is widely used in research labs, the slow write speed has limited its use in industrial settings. Instead, thermal scanning probe lithography has emerged, in which a heated tip is used to induce localized changes in the material, enabling write speeds limited by the speed of movement of the tip itself. A team from École Polytechnique Fédérale de Lausanne led by Juergen Brugger now reviews the current state of play for thermal scanning probe lithography, focusing on whether material is removed, changed or deposited by the heated tip, and the types of materials that have been studied.

[1]  R. C. Macridis A review , 1963 .

[2]  D. Rugar,et al.  Thermomechanical writing with an atomic force microscope tip , 1992 .

[3]  Thomas W. Kenny,et al.  Low‐stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope , 1996 .

[4]  H. J. Mamin Thermal writing using a heated atomic force microscope tip , 1996 .

[5]  W. Häberle,et al.  Ultrahigh density, high-data-rate NEMS-based AFM data storage system , 1999 .

[6]  P. Rice On the Origins of Pottery , 1999 .

[7]  Thomas W. Kenny,et al.  Ultrahigh-density atomic force microscopy data storage with erase capability , 1999 .

[8]  Ute Drechsler,et al.  The "Millipede"-More than thousand tips for future AFM storage , 2000, IBM J. Res. Dev..

[9]  W. Häberle,et al.  The "millipede" - nanotechnology entering data storage , 2002 .

[10]  Amar S. Basu,et al.  Scanning thermal lithography: Maskless, submicron thermochemical patterning of photoresist by ultracompliant probes , 2004 .

[11]  Brent A. Nelson,et al.  Nanoscale deposition of solid inks via thermal dip pen nanolithography , 2004 .

[12]  H. Hamann,et al.  Thermally assisted recording beyond traditional limits , 2004 .

[13]  Te-Hua Fang,et al.  Microthermal machining using scanning thermal microscopy , 2005 .

[14]  Andrea Notargiacomo,et al.  Nanofabrication by scanning probe microscope lithography: A review , 2005 .

[15]  H. Hamann,et al.  Ultra-high-density phase-change storage and memory , 2006, Nature materials.

[16]  Bernd Gotsmann,et al.  Exploiting Chemical Switching in a Diels–Alder Polymer for Nanoscale Probe Lithography and Data Storage , 2006 .

[17]  W. King,et al.  Direct writing of a conducting polymer with molecular-level control of physical dimensions and orientation. , 2006, Journal of the American Chemical Society.

[18]  Shubham Saxena,et al.  Nanoscale thermal analysis of an energetic material. , 2006, Nano letters.

[19]  Brent A. Nelson,et al.  Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography , 2006 .

[20]  W. King,et al.  1,3-Dipolar Cycloaddition for the Generation of Nanostructured Semiconductors by Heated Probe Tips , 2006 .

[21]  Takashi Okada,et al.  High-speed, sub-15 nm feature size thermochemical nanolithography. , 2007, Nano letters.

[22]  Yueming Hua,et al.  Nanoscale thermal lithography by local polymer decomposition using a heated atomic force microscope cantilever tip , 2007 .

[23]  Seth R. Marder,et al.  Local wettability modification by thermochemical nanolithography with write-read-overwrite capability , 2007 .

[24]  Il-Joo Cho,et al.  Silicon nitride cantilever array integrated with silicon heaters and piezoelectric detectors for probe-based data storage , 2007 .

[25]  William Paul King,et al.  The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography , 2008 .

[26]  Floating tip nanolithography. , 2007, Nano letters.

[27]  Yueming Hua,et al.  Nanopatterning materials using area selective atomic layer deposition in conjunction with thermochemical surface modification via heated AFM cantilever probe lithography , 2008 .

[28]  Brent A. Nelson,et al.  Modeling and Simulation of the Interface Temperature Between a Heated Silicon Tip and a Substrate , 2008 .

[29]  H. Schönherr,et al.  Atomic force microscopy based thermal lithography of poly(tert-butyl acrylate) block copolymer films for bioconjugation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[30]  H. Rothuizen,et al.  Ballistic nanoindentation of polymers , 2008 .

[31]  Brian C. Berry,et al.  Nanoscale thermal–mechanical probe determination of ‘softening transitions’ in thin polymer films , 2008, Nanotechnology.

[32]  Yueming Hua MATERIALS AND METHODS FOR NANOLITHOGRAPHY USING SCANNING THERMAL CANTILEVER PROBES , 2008 .

[33]  Franco Cacialli,et al.  Thermochemical nanopatterning of organic semiconductors. , 2009, Nature nanotechnology.

[34]  William D. Underwood,et al.  Direct writing and characterization of poly(p-phenylene vinylene) nanostructures , 2009 .

[35]  D. Teweldebrhan,et al.  Modification of graphene properties due to electron-beam irradiation , 2008, 0812.0571.

[36]  A. Knoll,et al.  Relaxation kinetics of nanoscale indents in a polymer glass. , 2009, Physical review letters.

[37]  R. Szoszkiewicz,et al.  Linear ripples and traveling circular ripples produced on polymers by thermal AFM probes , 2009 .

[38]  A. Knoll,et al.  Multi Tbit/in(2) storage densities with thermomechanical probes. , 2009, Nano letters.

[39]  Seth R. Marder,et al.  Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nano‐Objects , 2009 .

[40]  Bernd Gotsmann,et al.  Probe-Based Nanolithography: Self-Amplified Depolymerization Media for Dry Lithography , 2010 .

[41]  H. Schönherr,et al.  Nanoscale thermal AFM of polymers: transient heat flow effects. , 2010, ACS nano.

[42]  Philippe Dubois,et al.  Probe‐Based 3‐D Nanolithography Using Self‐Amplified Depolymerization Polymers , 2010, Advanced materials.

[43]  J. Baldwin,et al.  Reversible electron-induced conductance in polymer nanostructures , 2010 .

[44]  Seth R. Marder,et al.  Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics , 2010, Science.

[45]  A. Knoll,et al.  Nanoscale Thermal and Mechanical Interactions Studies using Heatable Probes , 2010 .

[46]  Kamlakar P Rajurkar,et al.  Tip-based nanomanufacturing by electrical, chemical, mechanical and thermal processes , 2010 .

[47]  A. Knoll,et al.  Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes , 2010, Science.

[48]  William P King,et al.  Maskless nanoscale writing of nanoparticle-polymer composites and nanoparticle assemblies using thermal nanoprobes. , 2010, Nano letters.

[49]  Samuel M. Nicaise,et al.  Neon Ion Beam Lithography (NIBL). , 2011, Nano letters.

[50]  Ute Drechsler,et al.  High density multi-level recording for archival data preservation , 2011 .

[51]  J. Robinson,et al.  Chemically isolated graphene nanoribbons reversibly formed in fluorographene using polymer nanowire masks. , 2011, Nano letters.

[52]  Michel Despont,et al.  Rapid turnaround scanning probe nanolithography , 2011, Nanotechnology.

[53]  Holger Schönherr,et al.  Scanning thermal lithography of tailored tert-butyl ester protected carboxylic acid functionalized (meth)acrylate polymer platforms. , 2011, ACS applied materials & interfaces.

[54]  Nazanin Bassiri-Gharb,et al.  Direct Fabrication of Arbitrary‐Shaped Ferroelectric Nanostructures on Plastic, Glass, and Silicon Substrates , 2011, Advanced materials.

[55]  William Paul King,et al.  Temperature-dependence of ink transport during thermal dip-pen nanolithography , 2011 .

[56]  Felix Holzner,et al.  Directed placement of gold nanorods using a removable template for guided assembly. , 2011, Nano letters.

[57]  A. Knoll,et al.  Field stitching in thermal probe lithography by means of surface roughness correlation , 2012, Nanotechnology.

[58]  D. Redinger,et al.  Organic TFTs: Solution-Processable Small-Molecule Semiconductors , 2012, Handbook of Visual Display Technology.

[59]  Direct-write polymer nanolithography in ultra-high vacuum , 2012, Beilstein journal of nanotechnology.

[60]  F. Cacialli,et al.  The influence of the substrate thermal conductivity on scanning thermochemical lithography , 2012 .

[61]  Z. Dai,et al.  Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever , 2012, Nanotechnology.

[62]  P. French,et al.  Piezo-thermal Probe Array for High Throughput Applications. , 2012, Sensors and actuators. A, Physical.

[63]  Jonathan R Felts,et al.  Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip , 2012, Nanotechnology.

[64]  David Redinger,et al.  Organic TFTs: Solution-Processable Small-Molecule Semiconductors , 2012, Handbook of Visual Display Technology.

[65]  Michel Despont,et al.  Thermal probe nanolithography: in-situ inspection, high-speed, high-resolution, 3D , 2013, Other Conferences.

[66]  Control of radiation damage in MoS(2) by graphene encapsulation. , 2013, ACS nano.

[67]  K. M. Carroll,et al.  Fabricating nanoscale chemical gradients with ThermoChemical NanoLithography. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[68]  B. Bhatia,et al.  HEATED ATOMIC FORCE MICROSCOPE CANTILEVERS AND THEIR APPLICATIONS , 2013 .

[69]  Xiuling Li,et al.  Fabrication of arbitrarily shaped silicon and silicon oxide nanostructures using tip-based nanofabrication , 2013 .

[70]  P. Stavrinou,et al.  On‐Demand Patterning of Nanostructured Pentacene Transistors by Scanning Thermal Lithography , 2013, Advanced materials.

[71]  F. Holzner Thermal scanning probe lithography using polyphthalaldehyde , 2013 .

[72]  C. Kuo,et al.  Energetic-assisted scanning thermal lithography for patterning silver nanoparticles in polymer films. , 2013, ACS applied materials & interfaces.

[73]  R. Szoszkiewicz,et al.  Heterogeneity of spiral wear patterns produced by local heating on amorphous polymers , 2013 .

[74]  J. Son,et al.  Formation of Locally Crystallized Ferroelectric Poly(vinylidene fluoride-ran-trifluoroethylene) Nanodots Based on Heated Atomic Force Microscopy , 2013 .

[75]  Takuya Kadowaki,et al.  Damage and strain in single-layer graphene induced by very-low-energy electron-beam irradiation , 2013 .

[76]  A. Gaitas Tip-based chemical vapor deposition with a scanning nano-heater , 2013 .

[77]  J. Robinson,et al.  Nanoscale reduction of graphene fluoride via thermochemical nanolithography. , 2013, ACS nano.

[78]  A. Knoll,et al.  Nanoscale thermomechanics of wear-resilient polymeric bilayer systems. , 2013, ACS nano.

[79]  A. Knoll,et al.  Thermal probe maskless lithography for 27.5 nm half-pitch Si technology. , 2013, Nano letters.

[80]  Dong-weon Lee,et al.  Selective nano-patterning of graphene using a heated atomic force microscope tip. , 2014, The Review of scientific instruments.

[81]  Philipp Mensch,et al.  Sub 20 nm Silicon Patterning and Metal Lift-Off Using Thermal Scanning Probe Lithography , 2014, 1411.4833.

[82]  William P King,et al.  Parallel nanoimaging and nanolithography using a heated microcantilever array , 2014, Nanotechnology.

[83]  Urs Dürig,et al.  Nanometer control of the markerless overlay process using thermal scanning probe lithography , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[84]  T. Wallow Advances in Patterning Materials and Processes XXXI , 2014 .

[85]  K. M. Carroll,et al.  Parallelization of thermochemical nanolithography. , 2014, Nanoscale.

[86]  A. Knoll,et al.  Nanometer Accurate Markerless Pattern Overlay Using Thermal Scanning Probe Lithography , 2014, IEEE Transactions on Nanotechnology.

[87]  A. Vakakis,et al.  Silicon nano-mechanical resonators fabricated by using tip-based nanofabrication , 2014, Nanotechnology.

[88]  K. M. Carroll,et al.  Speed dependence of thermochemical nanolithography for gray-scale patterning. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[89]  E. Riedo,et al.  Advanced scanning probe lithography. , 2014, Nature nanotechnology.

[90]  Thomas D. Anthopoulos,et al.  High-speed scanning thermal lithography for nanostructuring of electronic devices. , 2014, Nanoscale.

[91]  B. Cunningham,et al.  Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication , 2014, Nanotechnology.

[92]  R. Bashir,et al.  Tip-Based Nanofabrication of Arbitrary Shapes of Graphene Nanoribbons for Device Applications. , 2015, RSC advances.

[93]  P. M. Kristiansen,et al.  Iso- and variothermal injection compression moulding of polymer micro- and nanostructures for optical and medical applications , 2015 .

[94]  Colin Rawlings,et al.  Accurate Location and Manipulation of Nanoscaled Objects Buried under Spin-Coated Films. , 2015, ACS nano.

[95]  J. Felts,et al.  Design of a heated micro-cantilever optimized for thermo-capillary driven printing of molten polymer nanostructures , 2016 .

[96]  W. Porod,et al.  Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. , 2016, Nature nanotechnology.

[97]  K. M. Carroll,et al.  Understanding How Charged Nanoparticles Electrostatically Assemble and Distribute in 1-D. , 2016, Langmuir.

[98]  K. M. Carroll,et al.  Thermochemical scanning probe lithography of protein gradients at the nanoscale , 2016, Nanotechnology.

[99]  C. Weder,et al.  Nanopatterning of a Stimuli-Responsive Fluorescent Supramolecular Polymer by Thermal Scanning Probe Lithography , 2017, ACS applied materials & interfaces.

[100]  Jonathan R Felts,et al.  Nanopatterning of GeTe phase change films via heated-probe lithography. , 2017, Nanoscale.

[101]  C. Schwemmer,et al.  High throughput lithography using thermal scanning probes , 2017, 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[102]  Martin Spieser,et al.  Sub-10 Nanometer Feature Size in Silicon Using Thermal Scanning Probe Lithography , 2017, ACS nano.

[103]  Paolo Vavassori,et al.  Nanopatterning spin-textures: A route to reconfigurable magnonics , 2017 .

[104]  Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication , 2017, Scientific Reports.

[105]  H. Kim,et al.  Tip-Based Nanofabrication for Scalable Manufacturing , 2017, Micromachines.

[106]  High-aspect ratio nanopatterning via combined thermal scanning probe lithography and dry etching , 2017 .

[107]  J. Felts,et al.  Driving Surface Chemistry at the Nanometer Scale Using Localized Heat and Stress. , 2017, Nano letters.

[108]  A. Knoll,et al.  Thermal scanning probe lithography for the directed self-assembly of block copolymers , 2017, Nanotechnology.

[109]  K. M. Carroll,et al.  Testing the Equivalence between Spatial Averaging and Temporal Averaging in Highly Dilute Solutions. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[110]  C. Schwemmer,et al.  Fast turnaround fabrication of silicon point-contact quantum-dot transistors using combined thermal scanning probe lithography and laser writing , 2018, Nanotechnology.

[111]  E. Riedo,et al.  Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures , 2018, Communications Physics.

[112]  Kermit K. Murray,et al.  Wavelength dependent atomic force microscope tip-enhanced laser ablation , 2018, Applied Surface Science.

[113]  J. Son,et al.  Ferroelectric BiFeO3 nanodots formed in non-crystallized BiFeO3 thin-films via a local heating process using a heated atomic force microscope tip , 2018, Journal of Sol-Gel Science and Technology.

[114]  Christian Schwemmer,et al.  Nanofluidic rocking Brownian motors , 2018, Science.

[115]  K. M. Carroll,et al.  Explaining the Transition from Diffusion Limited to Reaction Limited Surface Assembly of Molecular Species through Spatial Variations , 2017, Langmuir : the ACS journal of surfaces and colloids.

[116]  J. Brugger,et al.  Combination of thermal scanning probe lithography and ion etching to fabricate 3D silicon nanopatterns with extremely smooth surface , 2018 .

[117]  Martin Spieser,et al.  Stabilization and control of topological magnetic solitons via magnetic nanopatterning of exchange bias systems , 2018, Applied Physics Letters.

[118]  J. Son,et al.  Vortex ferromagnetic domain structures of ferromagnetic CoFe2O4 nanodisks formed by local crystallization using a heated atomic force microscope tip , 2018 .

[119]  C. Schwemmer,et al.  Experimental Observation of Current Reversal in a Rocking Brownian Motor. , 2018, Physical review letters.

[120]  B. T. Chan,et al.  Conversion of a Patterned Organic Resist into a High Performance Inorganic Hard Mask for High Resolution Pattern Transfer. , 2018, ACS nano.

[121]  S. Zimmermann Nanoscale Lithography and Thermometry with Thermal Scanning Probes , 2018 .

[122]  J. Brugger,et al.  Phase masks for electron microscopy fabricated by thermal scanning probe lithography. , 2019, Micron.

[123]  C. Schwemmer,et al.  Thermal Scanning Probe Lithography (t-SPL) for Nano-Fabrication , 2019, 2019 Pan Pacific Microelectronics Symposium (Pan Pacific).

[124]  C. Schwemmer,et al.  Deterministic deposition of single nano-particles with sub 10 nm resolution. , 2019, Nano letters.

[125]  Brian S. Lee,et al.  Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography , 2019, Nature Electronics.

[126]  Y. Lam,et al.  Replication of a Tissue Microenvironment by Thermal Scanning Probe Lithography. , 2019, ACS applied materials & interfaces.

[127]  A. Peele,et al.  Investigation and optimization of reactive ion etching of Si3N4 and polyphthalaldehyde for two-step gray scale fabrication of diffractive optics , 2019, Journal of Vacuum Science & Technology B.

[128]  A. Knoll,et al.  Oxidation and Thermal Scanning Probe Lithography for High-Resolution Nanopatterning and Nanodevices , 2019, Electrical Atomic Force Microscopy for Nanoelectronics.

[129]  Juerg Leuthold,et al.  Ultra compact electrochemical metallization cells offering reproducible atomic scale memristive switching , 2019, Communications Physics.

[130]  A. M. van der Zande,et al.  Monolayer MoS2 Nanoribbon Transistors Fabricated by Scanning Probe Lithography. , 2019, Nano letters.

[131]  U. Celano Electrical Atomic Force Microscopy for Nanoelectronics , 2019, NanoScience and Technology.

[132]  E. Riedo,et al.  Nonreciprocal nano-optics with spin-waves , 2019, 1902.09420.

[133]  Kermit K. Murray,et al.  Tip-enhanced laser ablation and capture of DNA , 2019, Applied Surface Science.

[134]  E. Riedo,et al.  High-throughput protein nanopatterning. , 2019, Faraday discussions.

[135]  E. Riedo,et al.  Sub-10 nm Resolution Patterning of Pockets for Enzymes Immobilization with Independent Density and Quasi-3D Topography Control. , 2019, ACS applied materials & interfaces.