CLUSTER observation of collisionless transport at the magnetopause

[1] On May 10, 2002 the CLUSTER spacecraft (SC) encountered a ∼450 km (five magnetosheath thermal proton gyro-radii) wide high-latitude magnetopause (MP). Magnetic field observations indicate the crossing of a ∼130 km thick MP current sheet (CS) located inside a magnetic hole. Proton flux measurements diagnose a dense boundary layer (BL) directly attached to the MP and an additional rare BL located earthwards from the MP. Enhanced magnetic fluctuations are found near the local proton-cyclotron frequency Ωcp (0.4–2 Hz). Applying the phase-differencing technique we obtained a wavelength of 150–250 km and the propagating direction earthward perpendicular to the MP. Inside the MP the pitch-angle proton distribution demonstrates the presence of a transverse population. The formation of the two BLs can be understood by enhanced collisionless diffusion of magnetosheath protons due to wave-particle interaction, while higher-energy protons (Wp > 300 eV) penetrate into the BLs also via finite gyro-radius effect.

[1]  B. Tsurutani,et al.  Diffusion processes in the magnetopause boundary layer , 1982 .

[2]  T. Eastman,et al.  Plasma waves near the magnetopause , 1982 .

[3]  Andris Vaivads,et al.  In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence , 2005, Nature.

[4]  M. Parrot,et al.  ASPI experiment: measurements of fields and waves on board the INTERBALL-1 spacecraft , 1997 .

[5]  I. Papamastorakis,et al.  First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment , 2001 .

[6]  T. Horbury,et al.  Ion cyclotron waves in the high altitude cusp: CLUSTER observations at varying spacecraft separations , 2003 .

[7]  C. Russell,et al.  Wave-particle interactions at the magnetopause - Contributions to the dayside aurora , 1981 .

[8]  Hermann Lühr,et al.  Determination of dispersion relations in quasi-stationary plasma turbulence using dual satellite data , 1995 .

[9]  E. Amata,et al.  Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 1. Boundary structure and motion , 2006 .

[10]  Motohiko Tanaka,et al.  Simulations on lower hybrid drift instability and anomalous resistivity in the magnetic neutral sheet , 1981 .

[11]  B. Lavraud,et al.  Wave particle interactions in the high-altitude polar cusp: a Cluster case study , 2005 .

[12]  E. Belova,et al.  Excitation of ion cyclotron waves at the boundary of the magnetosphere. , 1991 .

[13]  R. Gendrin Magnetic turbulence and diffusion processes in the magnetopause boundary layer , 1983 .

[14]  A. Vaivads,et al.  Anomalous resistivity due to nonlinear lower-hybrid drift waves , 2005 .

[15]  M. W. Dunlop,et al.  Four‐point Cluster application of magnetic field analysis tools: The Curlometer , 2002 .

[16]  N. T. Gladd,et al.  Finite beta effects on the drift-cyclotron instability. [pressure ratio in plasma pinch] , 1979 .

[17]  K. Glassmeier,et al.  Four‐point Cluster application of magnetic field analysis tools: The discontinuity analyzer , 2002 .

[18]  R. Treumann,et al.  Plasma waves at the dayside magnetopause , 1988 .

[19]  M. Dunlop,et al.  The Cluster magnetic field investigation: Scientific objectives and instrumentation , 1993 .

[20]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[21]  S. Bale,et al.  Observation of lower hybrid drift instability in the diffusion region at a reconnecting magnetopause , 2002 .