Design of 60ghz 65nm CMOS power amplifier

Telecommunication industry claims for increasing data rate in wireless communication systems. The major demand of high data rate applications concerns a large panel of home multimedia exchanging data especially for the uncompressed HD data transfer. The 7GHz band around 60GHz is free of use and fulfils the short range gigabit communication requirements. CMOS technology is most appropriate since it drives a fast time to market with a low cost for high integration volume. However, the use of CMOS technology is challenging to satisfy loss and performance trade-off under power constraints. This thesis aims at designing power amplifiers operating at 60GHz with 65nm CMOS technology from STMicroelectronics. This approach is progressive because it is necessary to analyze and optimize the performance of passive and active components constituting the power amplifier using electromagnetic and microelectronics software. Finally, power amplifiers have been made. Their performances met specifications originally defined.

[1]  H. Gan,et al.  Integrated transformer baluns for RF low noise and power amplifiers , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[2]  Soyoung Kim,et al.  Modeling and screening on-chip interconnect inductance , 2004 .

[3]  A. Davidson,et al.  Achieving greater on-wafer S-parameter accuracy with the LRM calibration technique , 1989, 34th ARFTG Conference Digest.

[4]  W. L. Chan,et al.  A 60GHz-band 1V 11.5dBm power amplifier with 11% PAE in 65nm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[5]  L Moquillon,et al.  DC hot carrier stress effect on CMOS 65nm 60 GHz power amplifiers , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[6]  C. Enz,et al.  MOS transistor modeling for RF IC design , 2000, IEEE Journal of Solid-State Circuits.

[7]  Y. Deval,et al.  A programmable CMOS RF frequency synthesizer for multi-standard wireless applications , 2004, The 2nd Annual IEEE Northeast Workshop on Circuits and Systems, 2004. NEWCAS 2004..

[8]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[9]  Sanggeun Jeon Design and Stability Analysis Techniques for Switching-Mode Nonlinear Circuits: Power Amplifiers and Oscillators , 2006 .

[10]  J. Burghartz,et al.  Substrate effects in monolithic RF transformers on silicon , 2002 .

[11]  W. Bakalski,et al.  17-GHz 50-60 mW power amplifiers in 0.13-/spl mu/m standard CMOS , 2006, IEEE Microwave and Wireless Components Letters.

[12]  Quasi-static analysis of microstrip transmission line systems , 1993, 1993 (25th) Southeastern Symposium on System Theory.

[13]  P. Reynaert,et al.  Design Considerations for 60 GHz Transformer-Coupled CMOS Power Amplifiers , 2009, IEEE Journal of Solid-State Circuits.

[15]  G. F. Engen,et al.  Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer , 1979 .

[16]  Nicolas Schlumpf Adaptation dynamique de la compression d"un amplificateur RF pour des signaux modulés en amplitude et en phase , 2004 .

[17]  Rowan. Gilmore,et al.  Practical RF Circuit Design for Modern Wireless Systems: Active Circuits and Systems, Vol. 2 , 2003 .

[18]  K. Ohata,et al.  Wireless 1.25 Gb/s transceiver module at 60 GHz-band , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[19]  Charles F. Campbell,et al.  V-band power amplifier MMICs exhibiting low power slump characteristics utilizing a production released 0.15-um GaAs PHEMT process , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[20]  J. M. Rochelle,et al.  Comparison of a BSIM3V3 and EKV MOST model for a 0.5 um CMOS process and implications for analog circuit design , 2002, 2002 IEEE Nuclear Science Symposium Conference Record.

[21]  Salvatore Ragusa Écrêtage inversible pour l'amplification non-linéaire des signaux OFDM dans les terminaux mobiles , 2006 .

[22]  H. Gummel,et al.  Inversion charge modeling , 2001 .

[23]  A. Hajimiri,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas , 2006, IEEE Journal of Solid-State Circuits.

[24]  Jean-Baptiste Begueret,et al.  Transformer topologies for mmW integrated circuits , 2009, 2009 European Microwave Conference (EuMC).

[25]  L.P.B. Katehi,et al.  Compact Models Based on Transmission-Line Concept for Integrated Capacitors and Inductors , 2006, IEEE Transactions on Microwave Theory and Techniques.

[26]  C. Nguyen Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures , 2000 .

[27]  In-Ho Jeong,et al.  High performance RF passive integration on Si smart substrate , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[28]  Carlos Galup-Montoro,et al.  A compact model for flicker noise in MOS transistors for analog circuit design , 2003 .

[29]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[30]  Babak Heydari CMOS circuits and devices beyond 100 GHz , 2008 .

[31]  Ali Hajimiri,et al.  A 2.4-GHz, 2.2-W, 2-V fully-integrated CMOS circular-geometry active-transformer power amplifier , 2001, Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169).

[32]  R.W. Brodersen,et al.  Large-signal millimeter-wave CMOS modeling with BSIM3 , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[33]  P. Abramowitz,et al.  65nm LP/GP mix low cost platform for multi-media wireless and consumer applications , 2005, Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005..

[34]  Eric Kerherve,et al.  Optimized pad design for millimeter-wave applications with a 65nm CMOS RF technology , 2009, 2009 European Microwave Conference (EuMC).

[35]  H. Zirath,et al.  CMOS devices and circuits for microwave and millimeter wave applications , 2006, 2006 Asia-Pacific Microwave Conference.

[36]  V. Subramanian,et al.  A 60 GHz SiGe-HBT Power Amplifier With 20% PAE at 15 dBm Output Power , 2008, IEEE Microwave and Wireless Components Letters.

[37]  T. Biondi,et al.  Analysis and modeling of layout scaling in silicon integrated stacked transformers , 2006, IEEE Transactions on Microwave Theory and Techniques.

[38]  Ali M. Niknejad,et al.  Current combining 60GHz CMOS power amplifiers , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[39]  R.W. Brodersen,et al.  Design of CMOS for 60GHz applications , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[40]  W. C. Wong,et al.  Aperture-coupled dielectric resonator antenna using a strip-line feed , 2000 .

[41]  T.H. Lee,et al.  A physical model for planar spiral inductors on silicon , 1996, International Electron Devices Meeting. Technical Digest.

[42]  Baudouin Martineau Potentialités de la technologie CMOS 65nm SOI pour des applications sans fils en bande millimétrique , 2008 .

[43]  Dong Wook Kim,et al.  High quality RF passive integration using 35 /spl mu/m thick oxide manufacturing technology , 2002, 52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345).

[44]  Hong-Yeh Chang,et al.  A 60GHz Low-Power Six-Port Transceiver for Gigabit Software-Defined Transceiver Applications , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[45]  B. Floyd,et al.  A silicon 60GHz receiver and transmitter chipset for broadband communications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[46]  Feiyu Wang Design and Analysis of High-Efficiency L-Band Power Amplifiers , 2006 .

[47]  J. Mikkonen,et al.  Emerging wireless broadband networks , 1998 .

[48]  U.R. Pfeiffer Low-loss contact pad with tuned impedance for operation at millimeter wave frequencies , 2005, Proceedings. 9th IEEE Workshop on Signal Propagation on Interconnects, 2005..

[49]  Markus Paul Josef Mergens On-chip ESD protection in integrated circuits , 2001 .

[50]  D.Y. Jung,et al.  A system-on-package integration of 60 GHz ASK transmitter , 2006, 2006 IEEE Radio and Wireless Symposium.

[51]  Theodore S. Rappaport,et al.  Short-Range Wireless Communications for Next-Generation Networks: UWB, 60 GHz Millimeter-Wave WPAN, And ZigBee , 2007, IEEE Wireless Communications.

[52]  Didier Renard,et al.  Advanced backside failure analysis in 65 nm CMOS technology , 2007, Microelectron. Reliab..

[53]  Kentaro Nishimori,et al.  Performance Evaluation of 8×8 Multi-User MIMO-OFDM Testbed in an Actual Indoor Environment , 2006, 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications.

[54]  E. Beyne,et al.  SOP integration and codesign of antennas , 2004, IEEE Transactions on Advanced Packaging.

[55]  Robert W. Heath,et al.  Spatially greedy scheduling in multi-user MIMO wireless systems , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[56]  Jonathan Borremans,et al.  A digitally controlled compact 57-to-66GHz front-end in 45nm digital CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[57]  Joy Laskar,et al.  A 90nm CMOS 60GHz Radio , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[58]  Didier Belot,et al.  A 53-to-68GHz 18dBm power amplifier with an 8-way combiner in standard 65nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[59]  Chul Soon Park,et al.  A 60GHz stripline BPF for LTCC system-in-package applications , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[60]  S. Glisic,et al.  A fully integrated 60 GHz transmitter front-end with a PLL, an image-rejection filter and a PA in SiGe , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[61]  Josef A. Nossek,et al.  Joint transmit and receive multi-user MIMO decomposition approach for the downlink of multi-user MIMO systems , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[62]  Zhiping Yu,et al.  Scalable compact circuit model and synthesis for RF CMOS spiral inductors , 2006, IEEE Transactions on Microwave Theory and Techniques.

[63]  Joseph Mitola,et al.  The software radio architecture , 1995, IEEE Commun. Mag..

[64]  Ali M. Niknejad,et al.  A 90nm CMOS low-power 60GHz transceiver with integrated baseband circuitry , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[65]  U.R. Pfeiffer,et al.  A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology , 2007, IEEE Transactions on Microwave Theory and Techniques.

[66]  Lawrence E. Larson,et al.  A 65nm CMOS 2.4GHz 31.5dBm power amplifier with a distributed LC power-combining network and improved linearization for WLAN applications , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[67]  A. Tomkins,et al.  A 1.2V, 140GHz receiver with on-die antenna in 65nm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[68]  A. J. Richardson,et al.  Use of the 55-65 GHz oxygen absorption band for short-range broadband radio networks with minimal regulatory control , 1990 .

[69]  P. Schvan,et al.  Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio , 2007, IEEE Journal of Solid-State Circuits.

[70]  D. Kossives,et al.  Design and characterization of multilayer spiral transmission-line baluns , 1999 .

[71]  Roger B. Marks,et al.  Comparison of On-Wafer Calibrations , 1991, 38th ARFTG Conference Digest.

[72]  B. Floyd,et al.  A 60GHz radio chipset fully-integrated in a low-cost packaging technology , 2006, 56th Electronic Components and Technology Conference 2006.

[73]  Ali M. Niknejad,et al.  The next generation BSIM for sub-100nm mixed-signal circuit simulation , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[74]  Baudouin Martineau,et al.  A 60GHz power amplifier with 14.5dBm saturation power and 25% peak PAE in CMOS 65nm SOI , 2009, 2009 Proceedings of ESSCIRC.

[75]  R. A. Ginley Line-reflect-match calibration technique for the dual six-port automatic network analyzer , 1997 .

[76]  A.M. Niknejad,et al.  A tapered cascaded multi-stage distributed amplifier with 370GHz GBW in 90nm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[77]  R. Plana,et al.  Design Techniques and Modeling for 60GHz Applications With a 65nm-CMOS-RF Technology , 2008, 2008 Global Symposium on Millimeter Waves.

[78]  Yuji Sugimoto,et al.  Research activities on millimeter-wave indoor wireless communication systems at CRL , 1995, Proceedings of ICUPC '95 - 4th IEEE International Conference on Universal Personal Communications.

[79]  Eric Kerherve,et al.  RF-pad, Transmission Lines and balun optimization for 60GHz 65nm CMOS Power Amplifier , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[80]  Tom Dhaene,et al.  Selection of lumped element models for coupled lossy transmission lines , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[81]  G. Gildenblat,et al.  SP: an advanced surface-potential-based compact MOSFET model , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[82]  A. Abidi,et al.  Large suspended inductors on silicon and their use in a 2- mu m CMOS RF amplifier , 1993, IEEE Electron Device Letters.

[83]  P.C.H. Chan,et al.  Accurate modeling of lossy silicon substrate for on-chip inductors and transformers design , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[84]  Y. Takimoto Recent activities on millimeter wave indoor LAN system development in Japan , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[85]  G. S. Gildenblat,et al.  SP: An Advanced Surface-Potential-Based Compact MOSFET Model (invited) , 2003 .

[86]  S. Reynolds,et al.  60 GHz transmitter circuits in 65nm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[87]  T. LaRocca,et al.  60GHz CMOS differential and transformer-coupled power amplifier for compact design , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[88]  Steven Thijs,et al.  50-to-67GHz ESD-protected power amplifiers in digital 45nm LP CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[89]  H. Sjoland,et al.  A 20-GHz 130-nm CMOS front-end using baluns on glass carrier , 2008, 2008 2nd International Conference on Signals, Circuits and Systems.

[90]  Alberto Valdes-Garcia,et al.  A 1V 17.9dBm 60GHz power amplifier in standard 65nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[91]  B. Gaucher,et al.  A Silicon 60-GHz Receiver and Transmitter Chipset for Broadband Communications , 2006, IEEE Journal of Solid-State Circuits.

[92]  Ali M. Niknejad,et al.  mm-Wave Silicon Technology: 60 GHz and Beyond , 2008 .