Nanoscale Architecture of Metal‐Oxide‐Pillared Clays using Supercritical CO2

[1]  H. Yoshida,et al.  Adsorption and Photocatalytic Degradation of Toluene Vapor in Air on Highly Hydrophobic TiO2 Pillared Clay , 2003 .

[2]  K. Ooi,et al.  A comparison of supercritical carbon dioxide and organic solvents for the intercalation of 4-phenylazoaniline into a pillared clay mineral. , 2002, Journal of colloid and interface science.

[3]  Hyun Jong Kim,et al.  New CoO−SiO2-Sol Pillared Clays as Catalysts for NOx Conversion , 2002 .

[4]  K. Otake,et al.  TiO2-montmorillonite composites via supercritical intercalation. , 2002, Chemical communications.

[5]  K. Otake,et al.  Effects of supercritical impregnation conditions on the properties of silica–titania aerogels , 2001 .

[6]  S. Yamanaka,et al.  Silica-Pillar Formation Mechanism in Layer Structured Manganese Titanate , 2001 .

[7]  S. Yamanaka,et al.  Preparation and Adsorption Properties of Microporous Manganese Titanate Pillared with Silica , 1998 .

[8]  K. Ohtsuka Preparation and Properties of Two-Dimensional Microporous Pillared Interlayered Solids , 1997 .

[9]  G. W. Kirker,et al.  Preparation of molecular sieves from dense layered metal oxides , 1991 .

[10]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[11]  T. Pinnavaia,et al.  Intercalated Clay Catalysts , 1983, Science.

[12]  J. A. Kittrick Interlayer Forces in Montmorillonite and Vermiculite1 , 1969 .

[13]  Joseph M. DeSimone,et al.  Green chemistry using liquid and supercritical carbon dioxide , 2003 .

[14]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .