A dilemma of the uniqueness of weather and climate model closure parameters

Parameterisation schemes of subgrid-scale physical processes in atmospheric models contain so-called closure parameters. Their precise values are not generally known; thus, they are subject to fine-tuning for achieving optimal model performance. In this article, we show that there is a dilemma concerning the optimal parameter values: an identical prediction model formulation can have two different optimal closure parameter value settings depending on the level of approximations made in the data assimilation component of the prediction system. This result tends to indicate that the prediction model re-tuning in large-scale systems is not only needed when the prediction model undergoes a major change, but also when the data assimilation component is updated. Moreover, we advocate an accurate albeit expensive method based on so-called filter likelihood for the closure parameter estimation that is applicable in fine-tuning of both prediction model and data assimilation system parameters. In this article, we use a modified Lorenz-95 system as a prediction model and extended Kalman filter and ensemble adjustment Kalman filter for data assimilation. With this setup, we can compute the filter likelihood for the chosen parameters using the output of the two versions of the Kalman filter and apply a Markov chain Monte Carlo algorithm to explore the parameter posterior distributions.

[1]  Robert Vautard,et al.  Reducing systematic errors by empirically correcting model errors , 2000 .

[2]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[3]  Jeffrey L. Anderson A Non-Gaussian Ensemble Filter Update for Data Assimilation , 2010 .

[4]  Erkki Oja,et al.  Estimation of ECHAM5 climate model closure parameters with adaptive MCMC , 2010 .

[5]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[6]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[7]  Craig S. Schwartz,et al.  Impact of Assimilating Microwave Radiances with a Limited-Area Ensemble Data Assimilation System on Forecasts of Typhoon Morakot , 2012 .

[8]  Prashant D. Sardeshmukh,et al.  The Diagnosis of Mechanical Dissipation in the Atmosphere from Large-Scale Balance Requirements , 1992 .

[9]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .

[10]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[11]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[12]  Eigil Kaas,et al.  Using tendency errors to tune the parameterisation of unresolved dynamical scale interactions in atmospheric general circulation models , 1999 .

[13]  Alexander Ilin,et al.  On closure parameter estimation in chaotic systems , 2012 .

[14]  Jeffrey L. Anderson,et al.  The Data Assimilation Research Testbed: A Community Facility , 2009 .

[15]  Heikki Haario,et al.  Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection , 2012 .

[16]  Thomas Jung,et al.  Systematic errors of the atmospheric circulation in the ECMWF forecasting system , 2005 .

[17]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[18]  C. Jakob Accelerating progress in global atmospheric model development through improved parameterizations: challenges, opportunities, and strategies , 2010 .

[19]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[20]  D. Wilks Effects of stochastic parametrizations in the Lorenz '96 system , 2005 .

[21]  M. Dowd Estimating parameters for a stochastic dynamic marine ecological system , 2011 .

[22]  S. Brereton,et al.  A Diagnosis , 1875, The Indian medical gazette.

[23]  R. Torn,et al.  The Influence of Shallow Convection on Tropical Cyclone Track Forecasts , 2012 .

[24]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[25]  K. Fraedrich,et al.  Optimisation of simplified GCMs using circulation indices and maximum entropy production , 2008 .

[26]  Julia C. Hargreaves,et al.  Parameter estimation in an atmospheric GCM using the Ensemble , 2005 .

[27]  Hermann Singer Parameter Estimation of Nonlinear Stochastic Differential Equations: Simulated Maximum Likelihood versus Extended Kalman Filter and Itô-Taylor Expansion , 2002 .

[28]  U. Lohmann,et al.  Different Approaches for Constraining Global Climate Models of the Anthropogenic Indirect Aerosol Effect , 2007 .

[29]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[30]  James C McWilliams,et al.  Considerations for parameter optimization and sensitivity in climate models , 2010, Proceedings of the National Academy of Sciences.

[31]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[32]  W. Hazeleger,et al.  Optimizing Parameters in an Atmospheric General Circulation Model , 2005 .