DC Squid Magnetometers from YBa2Cu3O7-δ for Biomagnetic Applications

[1]  K. Enpuku,et al.  Suppression of thermally activated flux entry through a flux dam in high Tc superconducting quantum interference device magnetometer , 2002 .

[2]  J. Clarke,et al.  Low-frequency noise in high-transition-temperature superconducting multilayer magnetometers in ambient magnetic fields , 2001 .

[3]  S. Kuriki,et al.  Mechanisms of noise increase in direct-coupled high Tc superconducting quantum interference device magnetometers exposed to magnetic fields , 2001 .

[4]  K. Enpuku,et al.  A Four-Junction Switch for Controlling the Opening and Closing of a Pickup Coil in High-Tc Superconducting Quantum Interference Device Magnetometer , 2001 .

[5]  M. Hotta,et al.  Properties of a Flux Dam Inserted in the Pickup Coil of a High-Tc Superconducting Quantum Interference Device Magnetometer , 2001 .

[6]  S. Kuriki,et al.  Direct detection of the magnetic flux noise from moving vortices in wide YBa2Cu3O7−δ grain boundary junctions , 2001 .

[7]  Dietmar Drung,et al.  Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning , 2001 .

[8]  Michael Faley,et al.  Low noise HTS dc-SQUID flip-chip magnetometers and gradiometers , 2001 .

[9]  F. Ludwig,et al.  Optimization of direct-coupled high-T/sub c/ SQUID magnetometers for operation in magnetically unshielded environment , 2001 .

[10]  T. R. Clem,et al.  High-T/sub c/ SQUID gradiometer for mobile magnetic anomaly detection , 2001 .

[11]  Lutz Trahms,et al.  Low T/sub c/ SQUID measurement system for magnetic relaxation immunoassays in unshielded environment , 2001 .

[12]  S. Kuriki,et al.  Effects of flux dam on low-frequency noise in high-T/sub c/ SQUID magnetometers , 2001 .

[13]  R. McDermott,et al.  Ultrasensitive magnetic biosensor for homogeneous immunoassay. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Schilling,et al.  Sensitive Josephson magnetometry of flux quantization in a normal conducting hole in a narrow YBa2Cu3O7 line , 2000 .

[15]  R. Koch,et al.  Magnetic background noise cancellation in real-world environments , 2000 .

[16]  Herbert Bousack,et al.  Second-order, high-temperature superconducting gradiometer for magnetocardiography in unshielded environment , 2000 .

[17]  M. Schilling,et al.  Low-frequency noise and linearity of a YBa2Cu3O7 dc superconducting quantum interference device magnetometer in static magnetic fields , 1999 .

[18]  Dietmar Drung,et al.  Low-frequency noise of improved direct-coupled high-Tc superconducting quantum interference device magnetometers in ac and dc magnetic fields , 1999 .

[19]  Keiji Enpuku,et al.  Detection of Magnetic Nanoparticles with Superconducting Quantum Interference Device (SQUID) Magnetometer and Application to Immunoassays , 1999 .

[20]  John Clarke,et al.  High-Tc second-order gradiometer for magnetocardiography in an unshielded environment , 1999 .

[21]  D. Scalapino,et al.  Nonlinear current response of a d-wave superfluid , 1999, cond-mat/9908332.

[22]  J. Clarke,et al.  Low-frequency noise in field-cooled, directly coupled magnetometers , 1999, IEEE Transactions on Applied Superconductivity.

[23]  J. Beyer,et al.  High-performance high-T/sub c/ SQUID sensors for multichannel systems in magnetically disturbed environment , 1999, IEEE Transactions on Applied Superconductivity.

[24]  H. Soltner,et al.  HTS SQUID magnetometer with SQUID vector reference for operation in unshielded environment , 1999, IEEE Transactions on Applied Superconductivity.

[25]  S. Kumar,et al.  Sensitive high-T/sub c/ SQUID magnetometers for unshielded operation , 1999, IEEE Transactions on Applied Superconductivity.

[26]  John Clarke,et al.  High-transition-temperature superconducting quantum interference devices , 1999 .

[27]  L. Saury,et al.  Modelling of the coupling structure of a HTS DC SQUID amplifier , 1999, IEEE Transactions on Applied Superconductivity.

[28]  H. Rogalla,et al.  Effective area in slotted high Tc dc washer superconducting quantum interference devices , 1998 .

[29]  Jörn Beyer,et al.  Low-noise YBa2Cu3O7−x single layer dc superconducting quantum interference device (SQUID) magnetometer based on bicrystal junctions with 30° misorientation angle , 1998 .

[30]  M. Schilling,et al.  Interaction of process parameters in the laser deposition of YBa2Cu3O7 films , 1998 .

[31]  D. Drung Improved dc SQUID read-out electronics with low 1/f noise preamplifier , 1997 .

[32]  S. Brown,et al.  Magnetic field-induced noise in directly coupled high Tc superconducting quantum interference device magnetometers , 1997 .

[33]  John Clarke,et al.  HIGH-TC SUPERCONDUCTING GRADIOMETER WITH A LONG BASELINE ASYMMETRIC FLUX TRANSFORMER , 1997 .

[34]  J. Schubert,et al.  Electronic high-temperature radio frequency superconducting quantum interference device gradiometers for unshielded environment , 1997 .

[35]  F. Ludwig,et al.  YBA2CU3O7-X DC SQUID MAGNETOMETERS WITH BICRYSTAL JUNCTIONS FOR BIOMAGNETIC MULTICHANNEL APPLICATIONS , 1997 .

[36]  ter Hjm Marcel Brake,et al.  Temperature dependence of the effective sensing area of high-Tc dc SQUIDs , 1997 .

[37]  O. Dossel,et al.  The development of a high-T/sub c/ magnetocardiography system for unshielded environment , 1997, IEEE transactions on applied superconductivity.

[38]  H. Rogalla,et al.  Multichannel heart scanner based on high-T/sub c/ SQUIDs , 1997, IEEE Transactions on Applied Superconductivity.

[39]  John Clarke,et al.  High-Tc super conducting quantum interference devices with slots or holes: Low 1/f noise in ambient magnetic fields , 1997 .

[40]  John Clarke,et al.  Reduction of 1/f noise in high‐Tc dc superconducting quantum interference devices cooled in an ambient magnetic field , 1996 .

[41]  D. K. Lathrop,et al.  High performance superconducting quantum interference device feedback electronics , 1996 .

[42]  K. Enpuku,et al.  Effect of large dielectric constant of SrTiO3 substrate on the characteristics of high Tc dc superconducting quantum interference device , 1996 .

[43]  Y. Haruta,et al.  A multi-channel high-? SQUID system and its application , 1996 .

[44]  Dietmar Drung,et al.  Integrated YBa2Cu3O7−x magnetometer for biomagnetic measurements , 1996 .

[45]  Vittorio Foglietti,et al.  Flux dam, a method to reduce extra low frequency noise when a superconducting magnetometer is exposed to a magnetic field , 1995 .

[46]  John Clarke,et al.  Addendum: ‘‘Low noise YBa2Cu3O7−x‐SrTiO3‐YBa2Cu3O7−x multilayers for improved superconducting magnetometers’’ [Appl. Phys. Lett. 66, 373 (1995)] , 1995 .

[47]  L.P. Lee,et al.  Low-noise, single-layer YBa/sub 2/Cu/sub 3/O/sub 7-x/ DC SQUID magnetometers at 77 K , 1995, IEEE Transactions on Applied Superconductivity.

[48]  Zhang,et al.  Josephson flux-flow resonances in overdamped long YBa2Cu3O7 grain-boundary junctions. , 1995, Physical review. B, Condensed matter.

[49]  R. Cantor,et al.  Low‐noise YBa2Cu3O7−δ direct‐current superconducting quantum interference device magnetometer with direct signal injection , 1995 .

[50]  Gallagher,et al.  Initial-vortex-entry-related magnetic hysteresis in thin-film SQUID magnetometers. , 1994, Physical review. B, Condensed matter.

[51]  Yi Zhang,et al.  A second-order SQUID gradiometer operating at 77 K , 1994 .

[52]  K. Enpuku,et al.  Modulation of Kinetic Inductance of High Tc Superconducting Thin Films with Bias Current , 1993 .

[53]  C. Heiden,et al.  A YBa/sub 2/Cu/sub 3/O/sub 7/ thin film SQUID gradiometer for measurements in unshielded space , 1993, IEEE Transactions on Applied Superconductivity.

[54]  Dietmar Drung,et al.  Low‐noise high‐speed dc superconducting quantum interference device magnetometer with simplified feedback electronics , 1990 .

[55]  K. Likharev,et al.  Dynamics of Josephson Junctions and Circuits , 1986 .

[56]  Jiri Vrba,et al.  Squid Gradiometers in Real Environments , 1996 .

[57]  Harold Weinstock,et al.  SQUID sensors : fundamentals, fabrication, and applications , 1996 .

[58]  J. J. Kingston,et al.  Magnetic flux noise in copper oxide superconductors , 1994 .

[59]  Mark B. Ketchen,et al.  Planar coupling scheme for ultra low noise DC SQUIDs , 1981 .

[60]  Henry W. Ott,et al.  Noise Reduction Techniques in Electronic Systems , 1976 .