Wide-field Multi-object Spectroscopy to Enhance Dark Energy Science from LSST Thematic

Community access to deep (i ~ 25), highly-multiplexed optical and near-infrared multi-object spectroscopy (MOS) on 8-40m telescopes would greatly improve measurements of cosmological parameters from LSST. The largest gain would come from improvements to LSST photometric redshifts, which are employed directly or indirectly for every major LSST cosmological probe; deep spectroscopic datasets will enable reduced uncertainties in the redshifts of individual objects via optimized training. Such spectroscopy will also determine the relationship of galaxy SEDs to their environments, key observables for studies of galaxy evolution. The resulting data will also constrain the impact of blending on photo-z's. Focused spectroscopic campaigns can also improve weak lensing cosmology by constraining the intrinsic alignments between the orientations of galaxies. Galaxy cluster studies can be enhanced by measuring motions of galaxies in and around clusters and by testing photo-z performance in regions of high density. Photometric redshift and intrinsic alignment studies are best-suited to instruments on large-aperture telescopes with wider fields of view (e.g., Subaru/PFS, MSE, or GMT/MANIFEST) but cluster investigations can be pursued with smaller-field instruments (e.g., Gemini/GMOS, Keck/DEIMOS, or TMT/WFOS), so deep MOS work can be distributed amongst a variety of telescopes. However, community access to large amounts of nights for surveys will still be needed to accomplish this work. In two companion white papers we present gains from shallower, wide-area MOS and from single-target imaging and spectroscopy.

[1]  David Alonso,et al.  The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document , 2018, 1809.01669.

[2]  A. Bolton,et al.  A Big Sky Approach to Cadence Diplomacy , 2018, 1812.02204.

[3]  Melvin M. Varughese,et al.  PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II , 2011, 1111.5328.

[4]  Christopher B. Morrison,et al.  Clustering-based redshift estimation: comparison to spectroscopic redshifts , 2014, 1407.7860.

[5]  T. Collett THE POPULATION OF GALAXY–GALAXY STRONG LENSES IN FORTHCOMING OPTICAL IMAGING SURVEYS , 2015, 1507.02657.

[6]  D. Weinberg,et al.  Galaxy infall kinematics as a test of modified gravity , 2013, 1310.6768.

[7]  Daniel Masters,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.

[8]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[9]  R. Mandelbaum,et al.  Algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering , 2009, 0911.4973.

[10]  A. Amara,et al.  Cosmic Shear with Einstein Rings , 2017, 1710.01303.

[11]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[12]  M. Sullivan,et al.  4MOST Consortium Survey 10: The Time-Domain Extragalactic Survey (TiDES) , 2019, 1903.02476.

[13]  H. Hoekstra,et al.  KiDS+GAMA: Intrinsic alignment model constraints for current and future weak lensing cosmology , 2018, Astronomy & Astrophysics.

[14]  R. Nichol,et al.  COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY , 2012, 1211.4480.

[15]  L. Knox,et al.  Baryon Oscillations and Consistency Tests for Photometrically Determined Redshifts of Very Faint Galaxies , 2005, astro-ph/0509260.

[16]  A. Slosar,et al.  Testing Gravity Using Type Ia Supernovae Discovered by Next-Generation Wide-Field Imaging Surveys , 2019, 1903.07652.

[17]  M. Geller,et al.  HeCS-red: Dense Hectospec Surveys of redMaPPer-selected Clusters , 2017, The Astrophysical Journal.

[18]  G. Mamon,et al.  Dynamical signatures of infall around galaxy clusters: a generalized Jeans equation , 2013, 1306.6637.

[19]  Hu Zhan,et al.  Cosmic tomographies: baryon acoustic oscillations and weak lensing , 2006 .

[20]  Fred Moolekamp,et al.  scarlet: Source separation in multi-band images by Constrained Matrix Factorization , 2018, Astron. Comput..

[21]  D. Burke,et al.  Weighing the Giants – III. Methods and measurements of accurate galaxy cluster weak-lensing masses , 2012, 1208.0605.

[22]  R. Mandelbaum,et al.  Intrinsic alignments of disc and elliptical galaxies in the MassiveBlack-II and Illustris simulations , 2015, 1510.07024.

[23]  J. Blazek,et al.  Beyond linear galaxy alignments , 2017, Physical Review D.

[24]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[25]  T. Collett,et al.  Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images , 2017, 1708.00003.

[26]  University College London,et al.  Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample , 2010, 1008.3491.

[27]  M. Auger,et al.  Cosmological constraints from the double source plane lens SDSSJ0946+1006 , 2014, 1403.5278.

[28]  G. Meylan,et al.  H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.

[29]  D. Gerdes,et al.  Dark Energy Survey Year 1 results: the effect of intracluster light on photometric redshifts for weak gravitational lensing , 2018, Monthly Notices of the Royal Astronomical Society.

[30]  S. More,et al.  Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies , 2014, 1411.1755.

[31]  N. E. Sommer,et al.  First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters , 2018, The Astrophysical Journal.

[32]  N. E. Sommer,et al.  OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release , 2017, 1708.04526.

[33]  O. Lahav,et al.  CLASH: accurate photometric redshifts with 14 HST bands in massive galaxy cluster cores , 2017, 1705.02265.

[34]  R. Mandelbaum,et al.  Intrinsic alignments of group and cluster galaxies in photometric surveys , 2014, 1407.4813.

[35]  A. Slosar,et al.  Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.

[36]  Andrew P. Hearin,et al.  A GENERAL STUDY OF THE INFLUENCE OF CATASTROPHIC PHOTOMETRIC REDSHIFT ERRORS ON COSMOLOGY WITH COSMIC SHEAR TOMOGRAPHY , 2010, 1002.3383.

[37]  Rebecca A. Brown,et al.  The Maunakea Spectroscopic Explorer Book 2018 , 2018, 1810.08695.

[38]  Jeffrey A. Newman,et al.  Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.

[39]  Cora Dvorkin,et al.  Multitracing anisotropic non-Gaussianity with galaxy shapes , 2016, 1607.05232.

[40]  Durham,et al.  Lightcone mock catalogues from semi-analytic models of galaxy formation – I. Construction and application to the BzK colour selection , 2012, 1206.4049.

[41]  Puragra Guhathakurta,et al.  Maximizing Science in the Era of LSST: A Community-Based Study of Needed US Capabilities , 2016, 1610.01661.

[42]  Scott Dodelson,et al.  Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. , 2007, Physical review letters.

[43]  T. Eifler,et al.  The impact of intrinsic alignment on current and future cosmic shear surveys , 2015, 1506.08730.

[44]  Mass estimation in the outer regions of galaxy clusters , 1999, astro-ph/9906331.

[45]  J. Brinchmann,et al.  Euclid preparation , 2019, Astronomy & Astrophysics.

[46]  David R. Silva,et al.  The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.

[47]  D. Gerdes,et al.  Dark Energy Survey Year 1 results: constraints on intrinsic alignments and their colour dependence from galaxy clustering and weak lensing , 2018, Monthly Notices of the Royal Astronomical Society.

[48]  M. Lombardi,et al.  Cosmological parameters from strong gravitational lensing and stellar dynamics in elliptical galaxies , 2007, 0711.0882.

[49]  Carlton M. Baugh,et al.  How sensitive are predicted galaxy luminosities to the choice of stellar population synthesis model , 2013, 1309.7057.

[50]  O. Lahav,et al.  PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING , 2016, 1603.00882.

[51]  D. Kirk,et al.  The cosmological impact of intrinsic alignment model choice for cosmic shear , 2011, 1112.4752.

[52]  David O. Jones,et al.  Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters , 2017, 1710.00846.

[53]  L. Miller,et al.  Intrinsic alignments of galaxies in the Horizon-AGN cosmological hydrodynamical simulation , 2015, 1507.07843.

[54]  R. C. Smith,et al.  Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters , 2018, Monthly Notices of the Royal Astronomical Society.

[55]  D. Boudon,et al.  4MOST: Project overview and information for the First Call for Proposals , 2019, 1903.02464.

[56]  N. Gehrels,et al.  Spectroscopic Needs for Imaging Dark Energy Experiments , 2015 .

[57]  Andrew J. Connolly,et al.  Photometric Redshifts with the LSST: Evaluating Survey Observing Strategies , 2017, 1706.09507.

[58]  Michelle Lochner,et al.  Deep Multi-object Spectroscopy to Enhance Dark Energy Science from LSST , 2019, 1903.09325.

[59]  M. Sullivan,et al.  Single-object Imaging and Spectroscopy to Enhance Dark Energy Science from LSST. , 2019, 1903.09324.

[60]  Edinburgh,et al.  Measurement of intrinsic alignments in galaxy ellipticities , 2000, astro-ph/0009499.

[61]  Davis,et al.  Recovering redshift distributions with cross-correlations: pushing the boundaries , 2013, 1303.0292.

[62]  Massimo Brescia,et al.  Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2 , 2015 .

[63]  R. Teyssier,et al.  nIFTy galaxy cluster simulations – V. Investigation of the cluster infall region , 2016, 1609.07311.

[64]  Rachel Mandelbaum,et al.  Confirmation of general relativity on large scales from weak lensing and galaxy velocities , 2010, Nature.

[65]  Weighing the universe with photometric redshift surveys and the impact on dark energy forecasts , 2006, astro-ph/0605536.