Wide-field Multi-object Spectroscopy to Enhance Dark Energy Science from LSST Thematic
暂无分享,去创建一个
Michelle Lochner | Eric Gawiser | Rachel Mandelbaum | Mark Sullivan | Jeffrey A. Newman | Samuel J. Schmidt | Alex G. Kim | M. Sullivan | J. Newman | R. Mandelbaum | T. Collett | S. Schmidt | J. Blazek | E. Gawiser | M. Lochner | L. Galbany | A. Kim | R. Hlovzek | N. E. Chisari | C. D. Leonard | Sukhdeep Singh | Jonathan Blazek | Llu'is Galbany | Nora Elisa Chisari | Thomas Collett | Ren'ee A. Hlovzek | Sukhdeep Singh | C. Danielle Leonard | Daniel J. Perrefort | Daniel Perrefort
[1] David Alonso,et al. The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document , 2018, 1809.01669.
[2] A. Bolton,et al. A Big Sky Approach to Cadence Diplomacy , 2018, 1812.02204.
[3] Melvin M. Varughese,et al. PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II , 2011, 1111.5328.
[4] Christopher B. Morrison,et al. Clustering-based redshift estimation: comparison to spectroscopic redshifts , 2014, 1407.7860.
[5] T. Collett. THE POPULATION OF GALAXY–GALAXY STRONG LENSES IN FORTHCOMING OPTICAL IMAGING SURVEYS , 2015, 1507.02657.
[6] D. Weinberg,et al. Galaxy infall kinematics as a test of modified gravity , 2013, 1310.6768.
[7] Daniel Masters,et al. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.
[8] Donald W. Sweeney,et al. LSST Science Book, Version 2.0 , 2009, 0912.0201.
[9] R. Mandelbaum,et al. Algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering , 2009, 0911.4973.
[10] A. Amara,et al. Cosmic Shear with Einstein Rings , 2017, 1710.01303.
[11] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[12] M. Sullivan,et al. 4MOST Consortium Survey 10: The Time-Domain Extragalactic Survey (TiDES) , 2019, 1903.02476.
[13] H. Hoekstra,et al. KiDS+GAMA: Intrinsic alignment model constraints for current and future weak lensing cosmology , 2018, Astronomy & Astrophysics.
[14] R. Nichol,et al. COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY , 2012, 1211.4480.
[15] L. Knox,et al. Baryon Oscillations and Consistency Tests for Photometrically Determined Redshifts of Very Faint Galaxies , 2005, astro-ph/0509260.
[16] A. Slosar,et al. Testing Gravity Using Type Ia Supernovae Discovered by Next-Generation Wide-Field Imaging Surveys , 2019, 1903.07652.
[17] M. Geller,et al. HeCS-red: Dense Hectospec Surveys of redMaPPer-selected Clusters , 2017, The Astrophysical Journal.
[18] G. Mamon,et al. Dynamical signatures of infall around galaxy clusters: a generalized Jeans equation , 2013, 1306.6637.
[19] Hu Zhan,et al. Cosmic tomographies: baryon acoustic oscillations and weak lensing , 2006 .
[20] Fred Moolekamp,et al. scarlet: Source separation in multi-band images by Constrained Matrix Factorization , 2018, Astron. Comput..
[21] D. Burke,et al. Weighing the Giants – III. Methods and measurements of accurate galaxy cluster weak-lensing masses , 2012, 1208.0605.
[22] R. Mandelbaum,et al. Intrinsic alignments of disc and elliptical galaxies in the MassiveBlack-II and Illustris simulations , 2015, 1510.07024.
[23] J. Blazek,et al. Beyond linear galaxy alignments , 2017, Physical Review D.
[24] J. Peacock,et al. Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.
[25] T. Collett,et al. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images , 2017, 1708.00003.
[26] University College London,et al. Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample , 2010, 1008.3491.
[27] M. Auger,et al. Cosmological constraints from the double source plane lens SDSSJ0946+1006 , 2014, 1403.5278.
[28] G. Meylan,et al. H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.
[29] D. Gerdes,et al. Dark Energy Survey Year 1 results: the effect of intracluster light on photometric redshifts for weak gravitational lensing , 2018, Monthly Notices of the Royal Astronomical Society.
[30] S. More,et al. Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies , 2014, 1411.1755.
[31] N. E. Sommer,et al. First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters , 2018, The Astrophysical Journal.
[32] N. E. Sommer,et al. OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release , 2017, 1708.04526.
[33] O. Lahav,et al. CLASH: accurate photometric redshifts with 14 HST bands in massive galaxy cluster cores , 2017, 1705.02265.
[34] R. Mandelbaum,et al. Intrinsic alignments of group and cluster galaxies in photometric surveys , 2014, 1407.4813.
[35] A. Slosar,et al. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.
[36] Andrew P. Hearin,et al. A GENERAL STUDY OF THE INFLUENCE OF CATASTROPHIC PHOTOMETRIC REDSHIFT ERRORS ON COSMOLOGY WITH COSMIC SHEAR TOMOGRAPHY , 2010, 1002.3383.
[37] Rebecca A. Brown,et al. The Maunakea Spectroscopic Explorer Book 2018 , 2018, 1810.08695.
[38] Jeffrey A. Newman,et al. Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.
[39] Cora Dvorkin,et al. Multitracing anisotropic non-Gaussianity with galaxy shapes , 2016, 1607.05232.
[40] Durham,et al. Lightcone mock catalogues from semi-analytic models of galaxy formation – I. Construction and application to the BzK colour selection , 2012, 1206.4049.
[41] Puragra Guhathakurta,et al. Maximizing Science in the Era of LSST: A Community-Based Study of Needed US Capabilities , 2016, 1610.01661.
[42] Scott Dodelson,et al. Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. , 2007, Physical review letters.
[43] T. Eifler,et al. The impact of intrinsic alignment on current and future cosmic shear surveys , 2015, 1506.08730.
[44] Mass estimation in the outer regions of galaxy clusters , 1999, astro-ph/9906331.
[45] J. Brinchmann,et al. Euclid preparation , 2019, Astronomy & Astrophysics.
[46] David R. Silva,et al. The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.
[47] D. Gerdes,et al. Dark Energy Survey Year 1 results: constraints on intrinsic alignments and their colour dependence from galaxy clustering and weak lensing , 2018, Monthly Notices of the Royal Astronomical Society.
[48] M. Lombardi,et al. Cosmological parameters from strong gravitational lensing and stellar dynamics in elliptical galaxies , 2007, 0711.0882.
[49] Carlton M. Baugh,et al. How sensitive are predicted galaxy luminosities to the choice of stellar population synthesis model , 2013, 1309.7057.
[50] O. Lahav,et al. PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING , 2016, 1603.00882.
[51] D. Kirk,et al. The cosmological impact of intrinsic alignment model choice for cosmic shear , 2011, 1112.4752.
[52] David O. Jones,et al. Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters , 2017, 1710.00846.
[53] L. Miller,et al. Intrinsic alignments of galaxies in the Horizon-AGN cosmological hydrodynamical simulation , 2015, 1507.07843.
[54] R. C. Smith,et al. Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters , 2018, Monthly Notices of the Royal Astronomical Society.
[55] D. Boudon,et al. 4MOST: Project overview and information for the First Call for Proposals , 2019, 1903.02464.
[56] N. Gehrels,et al. Spectroscopic Needs for Imaging Dark Energy Experiments , 2015 .
[57] Andrew J. Connolly,et al. Photometric Redshifts with the LSST: Evaluating Survey Observing Strategies , 2017, 1706.09507.
[58] Michelle Lochner,et al. Deep Multi-object Spectroscopy to Enhance Dark Energy Science from LSST , 2019, 1903.09325.
[59] M. Sullivan,et al. Single-object Imaging and Spectroscopy to Enhance Dark Energy Science from LSST. , 2019, 1903.09324.
[60] Edinburgh,et al. Measurement of intrinsic alignments in galaxy ellipticities , 2000, astro-ph/0009499.
[61] Davis,et al. Recovering redshift distributions with cross-correlations: pushing the boundaries , 2013, 1303.0292.
[62] Massimo Brescia,et al. Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2 , 2015 .
[63] R. Teyssier,et al. nIFTy galaxy cluster simulations – V. Investigation of the cluster infall region , 2016, 1609.07311.
[64] Rachel Mandelbaum,et al. Confirmation of general relativity on large scales from weak lensing and galaxy velocities , 2010, Nature.
[65] Weighing the universe with photometric redshift surveys and the impact on dark energy forecasts , 2006, astro-ph/0605536.