Uncertainty principle guarantees genuine source of intrinsic randomness
暂无分享,去创建一个
[1] Markus P. Mueller,et al. A derivation of quantum theory from physical requirements , 2010, 1004.1483.
[2] Roger Colbeck,et al. Free randomness can be amplified , 2011, Nature Physics.
[3] David Thomas,et al. The Art in Computer Programming , 2001 .
[4] H. P. Robertson. The Uncertainty Principle , 1929 .
[5] P. Busch,et al. Heisenberg's uncertainty principle , 2006, quant-ph/0609185.
[6] Rodrigo Gallego,et al. Full randomness from arbitrarily deterministic events , 2012, Nature Communications.
[7] S. Popescu,et al. Quantum nonlocality as an axiom , 1994 .
[8] A. Uchida,et al. Fast physical random bit generation with chaotic semiconductor lasers , 2008 .
[9] Jonathan Barrett. Information processing in generalized probabilistic theories , 2005 .
[10] A. Winter,et al. Entropic uncertainty relations—a survey , 2009, 0907.3704.
[11] G. D’Ariano,et al. Informational derivation of quantum theory , 2010, 1011.6451.
[12] Robert König,et al. The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.
[13] L. Hardy. Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.
[14] N. Mermin. Hidden variables and the two theorems of John Bell , 1993, 1802.10119.
[15] N. Gisin,et al. Optical quantum random number generator , 1999, quant-ph/9907006.
[16] Robert W. Spekkens,et al. Einstein, Incompleteness, and the Epistemic View of Quantum States , 2007, 0706.2661.
[17] J. F. Dynes,et al. A high speed , postprocessing free , quantum random number generator , 2008 .
[18] Sibasish Ghosh,et al. Degree of Complementarity Determines the Nonlocality in Quantum Mechanics , 2012, 1206.6054.
[19] S. Wehner,et al. The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics , 2010, Science.
[20] I. Bialynicki-Birula,et al. Uncertainty relations for information entropy in wave mechanics , 1975 .
[21] Maassen,et al. Generalized entropic uncertainty relations. , 1988, Physical review letters.
[22] Kraus. Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.
[23] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .
[24] G. D’Ariano,et al. Spooky action-at-a-distance in general probabilistic theories , 2011, 1108.3681.
[25] D. Deutsch. Uncertainty in Quantum Measurements , 1983 .
[26] H. Barnum,et al. Teleportation in General Probabilistic Theories , 2008, 0805.3553.
[27] R. Prevedel,et al. Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement , 2010, 1012.0332.
[29] W. Louisell. Amplitude and phase uncertainty relations , 1963 .
[30] Stefano Pironio,et al. Randomness versus nonlocality and entanglement. , 2011, Physical review letters.
[31] Paul Benioff,et al. Possible strengthening of the interpretative rules of quantum mechanics , 1973 .
[32] J. Bell. On the Problem of Hidden Variables in Quantum Mechanics , 1966 .
[33] H. Barnum,et al. Entropy and information causality in general probabilistic theories , 2009, 0909.5075.
[34] H. Barnum,et al. Generalized no-broadcasting theorem. , 2007, Physical review letters.
[35] Stefano Pironio,et al. Random numbers certified by Bell’s theorem , 2009, Nature.
[36] H. Barnum,et al. Ensemble Steering, Weak Self-Duality, and the Structure of Probabilistic Theories , 2009, 0912.5532.
[37] Max Born,et al. Das Adiabatenprinzip in der Quantenmechanik , 1927 .
[38] Adam Brandenburger,et al. A classification of hidden-variable properties , 2007, 0711.4650.
[39] Howard Barnum,et al. Information Processing in Convex Operational Theories , 2009, QPL/DCM@ICALP.
[40] M. Born. Quantenmechanik der Stoßvorgänge , 1926 .
[41] Paul Busch,et al. Complementarity and Uncertainty in Mach-Zehnder Interferometry and beyond , 2006, quant-ph/0609048.
[42] Michael Martin Nieto,et al. Phase and Angle Variables in Quantum Mechanics , 1968 .
[43] J. Wrench. Table errata: The art of computer programming, Vol. 2: Seminumerical algorithms (Addison-Wesley, Reading, Mass., 1969) by Donald E. Knuth , 1970 .
[44] R. Spekkens. Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.
[45] Corsin Pfister. One simple postulate implies that every polytopic state space is classical , 2012, 1203.5622.