0-1 Quadratic Knapsack Problems: An Exact Approach Based on a t-Linearization

This paper presents an exact solution method based on a new linearization scheme for the 0-1 quadratic knapsack problem, which consists of maximizing a quadratic pseudo-Boolean function with nonnegative coefficients subject to a linear capacity constraint. Contrasting with traditional linearization schemes, our approach adds only one extra variable. The suggested linearization framework provides a tight upper bound, which is used in a branch-and-bound scheme. This upper bound is numerically compared with that of [A. Billionnet, A. Faye, and E. Soutif, European J. Oper. Res., 112 (1999), pp. 664--672], and our branch-and-bound scheme with the exact algorithm of [W. D. Pisinger, A. B. Rasmussen, and R. Sandvik, INFORMS J. Comput., 19 (2007), pp. 280--290]. The experiments show that our upper bound is quite competitive (less than $1\%$ from the optimum). In addition, the proposed branch-and-bound clearly outperforms the algorithm developed by Pisinger et al. for low density instances ($25\%$) for all instanc...

[1]  R. Fortet L’algebre de Boole et ses applications en recherche operationnelle , 1960 .

[2]  P. L. Ivanescu Some Network Flow Problems Solved with Pseudo-Boolean Programming , 1965 .

[3]  D. J. Laughhunn Quadratic Binary Programming with Application to Capital-Budgeting Problems , 1970, Oper. Res..

[4]  J. Rhys A Selection Problem of Shared Fixed Costs and Network Flows , 1970 .

[5]  F. Glover IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS , 1975 .

[6]  H. D. Ratliff,et al.  Minimum cuts and related problems , 1975, Networks.

[7]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[8]  P. Hammer,et al.  Quadratic knapsack problems , 1980 .

[9]  Egon Balas,et al.  Nonlinear 0–1 programming: II. Dominance relations and algorithms , 1983, Math. Program..

[10]  Egon Balas,et al.  Nonlinear 0–1 programming: I. Linearization techniques , 1984, Math. Program..

[11]  P. Hansen,et al.  Best network flow bounds for the quadratic knapsack problem , 1989 .

[12]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[13]  Philippe Michelon,et al.  Lagrangean methods for the 0-1 Quadratic Knapsack Problem , 1996 .

[14]  Alain Billionnet,et al.  Linear programming for the 0–1 quadratic knapsack problem , 1996 .

[15]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[16]  Peter Hahn,et al.  Lower Bounds for the Quadratic Assignment Problem Based upon a Dual Formulation , 1998, Oper. Res..

[17]  Alain Billionnet,et al.  A new upper bound for the 0-1 quadratic knapsack problem , 1999, Eur. J. Oper. Res..

[18]  Paolo Toth,et al.  Exact Solution of the Quadratic Knapsack Problem , 1999, INFORMS J. Comput..

[19]  Éric Soutif,et al.  Decomposition and Linearization for 0-1 Quadratic Programming , 2000, Ann. Oper. Res..

[20]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[21]  W. Art Chaovalitwongse,et al.  A new linearization technique for multi-quadratic 0-1 programming problems , 2004, Oper. Res. Lett..

[22]  Alain Billionnet,et al.  An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem , 2004, Eur. J. Oper. Res..

[23]  Fred W. Glover,et al.  Comparisons and enhancement strategies for linearizing mixed 0-1 quadratic programs , 2004, Discret. Optim..

[24]  Philippe Michelon,et al.  “Miniaturized” Linearizations for Quadratic 0/1 Problems , 2005, Ann. Oper. Res..

[25]  David Pisinger,et al.  The quadratic knapsack problem - a survey , 2007, Discret. Appl. Math..

[26]  Leo Liberti,et al.  Compact linearization for binary quadratic problems , 2007, 4OR.

[27]  David Pisinger,et al.  Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction , 2007, INFORMS J. Comput..

[28]  Alain Billionnet,et al.  Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method , 2009, Discret. Appl. Math..

[29]  Pierre Hansen,et al.  Improved compact linearizations for the unconstrained quadratic 0-1 minimization problem , 2009, Discret. Appl. Math..

[30]  Philippe Michelon,et al.  A linearization framework for unconstrained quadratic (0-1) problems , 2009, Discret. Appl. Math..

[31]  Anass Nagih,et al.  Reoptimization in Lagrangian methods for the 0-1 quadratic knapsack problem , 2012, Comput. Oper. Res..