A multidimensional grid-adaptive relativistic magnetofluid code
暂无分享,去创建一个
[1] N. Bucciantini,et al. An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .
[2] R. Keppens,et al. Simulations of Relativistic Astrophysical Flows , 2005 .
[3] M. Aloy,et al. Relativistic MHD simulations of extragalactic jets , 2005 .
[4] B R U N O G I A C O M A Z Z O,et al. The exact solution of the Riemann problem in relativistic magnetohydrodynamics , 2006 .
[5] Marsha Berger,et al. Data structures for adaptive grid generation , 1986 .
[6] David Neilsen,et al. Relativistic MHD with adaptive mesh refinement , 2006, gr-qc/0605102.
[7] Rony Keppens,et al. Hybrid block-AMR in cartesian and curvilinear coordinates: MHD applications , 2007, J. Comput. Phys..
[8] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[9] Jeremiah P. Ostriker,et al. A piecewise parabolic method for cosmological hydrodynamics , 1995 .
[10] Department of Physics,et al. WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics , 2007, gr-qc/0701109.
[11] Rosa Donat,et al. A Flux-Split Algorithm applied to Relativistic Flows , 1998 .
[12] J. P. Goedbloed,et al. Adaptive Mesh Refinement for conservative systems: multi-dimensional efficiency evaluation , 2003, astro-ph/0403124.
[13] B. M. Marder,et al. A method for incorporating Gauss' lasw into electromagnetic pic codes , 1987 .
[14] P. Roe,et al. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .
[15] Jeremiah P. Ostriker,et al. A Cosmological Hydrodynamic Code Based on the Total Variation Diminishing Scheme , 1993 .
[16] G. Tóth,et al. Comparison of Some Flux Corrected Transport and Total Variation Diminishing Numerical Schemes for Hydrodynamic and Magnetohydrodynamic Problems , 1996 .
[17] A. Ferrari,et al. PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.
[18] E. Müller,et al. Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.
[19] O. A. Kuznetsov,et al. An approximate Riemann solver for relativistic magnetohydrodynamics , 2002 .
[20] G. Bodo,et al. An HLLC Riemann solver for relativistic flows ¿ I. Hydrodynamics , 2005, astro-ph/0506414.
[21] Santa Barbara,et al. Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement , 2005, astro-ph/0509254.
[22] J. Font,et al. Multidimensional relativistic hydrodynamics: characteristics fields and modern high-resolution shock-capturing schemes , 1994 .
[23] J. Michael Picone,et al. Evolution of the Orszag-Tang vortex system in a compressible medium , 1991 .
[24] Claus-Dieter Munz,et al. Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .
[25] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[26] R. Keppens,et al. AMRVAC and relativistic hydrodynamic simulations for gamma-ray burst afterglow phases , 2007, astro-ph/0701434.
[27] Peng Wang,et al. Relativistic Hydrodynamic Flows Using Spatial and Temporal Adaptive Structured Mesh Refinement , 2008 .
[28] E. Muller,et al. GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics , 1999, astro-ph/9903352.
[29] S. Komissarov,et al. A Godunov-type scheme for relativistic magnetohydrodynamics , 1999 .
[30] Steven J. Plimpton,et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .
[31] Weiqun Zhang,et al. RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code , 2005, astro-ph/0505481.
[32] Pekka Janhunen,et al. HLLC solver for ideal relativistic MHD , 2007, J. Comput. Phys..
[33] G. Mellema,et al. Special relativistic jet collimation by inertial confinement , 1994 .
[34] P. Janhunen,et al. A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods , 2000 .
[35] William H. Press,et al. Numerical Recipes in Fortran 77 , 1992 .
[36] Dinshaw S. Balsara,et al. Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .
[37] P. Londrillo,et al. An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .
[38] S. Komissarov,et al. Multi-dimensional Numerical Scheme for Resistive Relativistic MHD , 2007, 0708.0323.
[39] C. Munz,et al. Hyperbolic divergence cleaning for the MHD equations , 2002 .
[40] M. Brio,et al. An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .
[41] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[42] R. Keppens,et al. Extragalactic jets with helical magnetic fields: relativistic MHD simulations , 2008, 0802.2034.
[43] Bernd Einfeld. On Godunov-type methods for gas dynamics , 1988 .