A multidimensional grid-adaptive relativistic magnetofluid code

A robust second order, shock-capturing numerical scheme for multidimensional special relativistic magnetohydrodynamics on computational domains with adaptive mesh refinement is presented. The base solver is a total variation diminishing Lax-Friedrichs scheme in a finite volume setting and is combined with a diffusive approach for controlling magnetic monopole errors. The consistency between the primitive and conservative variables is ensured at all limited reconstructions and the spatial part of the four velocity is used as a primitive variable. Demonstrative relativistic examples are shown to validate the implementation. We recover known exact solutions to relativistic MHD Riemann problems, and simulate the shock-dominated long term evolution of Lorentz factor 7 vortical flows distorting magnetic island chains. (C) 2008 Elsevier B.V. All rights reserved

[1]  N. Bucciantini,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .

[2]  R. Keppens,et al.  Simulations of Relativistic Astrophysical Flows , 2005 .

[3]  M. Aloy,et al.  Relativistic MHD simulations of extragalactic jets , 2005 .

[4]  B R U N O G I A C O M A Z Z O,et al.  The exact solution of the Riemann problem in relativistic magnetohydrodynamics , 2006 .

[5]  Marsha Berger,et al.  Data structures for adaptive grid generation , 1986 .

[6]  David Neilsen,et al.  Relativistic MHD with adaptive mesh refinement , 2006, gr-qc/0605102.

[7]  Rony Keppens,et al.  Hybrid block-AMR in cartesian and curvilinear coordinates: MHD applications , 2007, J. Comput. Phys..

[8]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[9]  Jeremiah P. Ostriker,et al.  A piecewise parabolic method for cosmological hydrodynamics , 1995 .

[10]  Department of Physics,et al.  WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics , 2007, gr-qc/0701109.

[11]  Rosa Donat,et al.  A Flux-Split Algorithm applied to Relativistic Flows , 1998 .

[12]  J. P. Goedbloed,et al.  Adaptive Mesh Refinement for conservative systems: multi-dimensional efficiency evaluation , 2003, astro-ph/0403124.

[13]  B. M. Marder,et al.  A method for incorporating Gauss' lasw into electromagnetic pic codes , 1987 .

[14]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[15]  Jeremiah P. Ostriker,et al.  A Cosmological Hydrodynamic Code Based on the Total Variation Diminishing Scheme , 1993 .

[16]  G. Tóth,et al.  Comparison of Some Flux Corrected Transport and Total Variation Diminishing Numerical Schemes for Hydrodynamic and Magnetohydrodynamic Problems , 1996 .

[17]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[18]  E. Müller,et al.  Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.

[19]  O. A. Kuznetsov,et al.  An approximate Riemann solver for relativistic magnetohydrodynamics , 2002 .

[20]  G. Bodo,et al.  An HLLC Riemann solver for relativistic flows ¿ I. Hydrodynamics , 2005, astro-ph/0506414.

[21]  Santa Barbara,et al.  Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement , 2005, astro-ph/0509254.

[22]  J. Font,et al.  Multidimensional relativistic hydrodynamics: characteristics fields and modern high-resolution shock-capturing schemes , 1994 .

[23]  J. Michael Picone,et al.  Evolution of the Orszag-Tang vortex system in a compressible medium , 1991 .

[24]  Claus-Dieter Munz,et al.  Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .

[25]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[26]  R. Keppens,et al.  AMRVAC and relativistic hydrodynamic simulations for gamma-ray burst afterglow phases , 2007, astro-ph/0701434.

[27]  Peng Wang,et al.  Relativistic Hydrodynamic Flows Using Spatial and Temporal Adaptive Structured Mesh Refinement , 2008 .

[28]  E. Muller,et al.  GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics , 1999, astro-ph/9903352.

[29]  S. Komissarov,et al.  A Godunov-type scheme for relativistic magnetohydrodynamics , 1999 .

[30]  Steven J. Plimpton,et al.  Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .

[31]  Weiqun Zhang,et al.  RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code , 2005, astro-ph/0505481.

[32]  Pekka Janhunen,et al.  HLLC solver for ideal relativistic MHD , 2007, J. Comput. Phys..

[33]  G. Mellema,et al.  Special relativistic jet collimation by inertial confinement , 1994 .

[34]  P. Janhunen,et al.  A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods , 2000 .

[35]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[36]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .

[37]  P. Londrillo,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .

[38]  S. Komissarov,et al.  Multi-dimensional Numerical Scheme for Resistive Relativistic MHD , 2007, 0708.0323.

[39]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[40]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[41]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[42]  R. Keppens,et al.  Extragalactic jets with helical magnetic fields: relativistic MHD simulations , 2008, 0802.2034.

[43]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .