Palladium catalyzed aerobic oxidation for the incorporation of an olfactory group on naturally occurring β-caryophyllene

[1]  E. V. Gusevskaya,et al.  Aerobic Palladium‐Catalyzed Oxidations in the Upgrading of Biorenewables: Oxidation of β‐Ionone and α‐Ionone , 2017 .

[2]  E. V. Gusevskaya,et al.  Functionalization of the naturally occurring linalool and nerol by the palladium catalyzed oxidation of their trisubstituted olefinic bonds , 2017 .

[3]  E. V. Gusevskaya,et al.  Aerobic oxidation of naturally occurring α-bisabolol catalyzed by palladium(II) salts as sole catalysts , 2016 .

[4]  E. N. Santos,et al.  Aggregating an olfactory group on the naturally occurring β-caryophyllene by hydroformylation , 2016 .

[5]  T. Sheppard,et al.  Palladium(II)-Catalysed Oxidation of Alkenes , 2015, Synthesis.

[6]  E. V. Gusevskaya,et al.  Palladium catalyzed oxidation of renewable terpenes with molecular oxygen: oxidation of α-bisabolol under chloride-free nonacidic conditions , 2015 .

[7]  M. Meier,et al.  Regioselective catalytic acetoxylation of limonene , 2014 .

[8]  E. V. Gusevskaya,et al.  Palladium catalyzed oxidation of renewable terpenes with molecular oxygen: oxidation of α-bisabolol under chloride-free conditions , 2014 .

[9]  E. V. Gusevskaya Reactions of Terpenes Catalyzed by Heteropoly Compounds: Valorization of Biorenewables , 2014 .

[10]  A. Behr,et al.  Towards resource efficient chemistry: tandem reactions with renewables , 2014 .

[11]  A. Börner,et al.  Hydroformylation in the Realm of Scents , 2014 .

[12]  E. V. Gusevskaya,et al.  Palladium‐Catalyzed Allylic Oxidation of Monoterpenic Alkenes with Molecular Oxygen , 2012 .

[13]  E. V. Gusevskaya,et al.  Palladium-Catalyzed Aerobic Oxidation of Naturally Occurring Allylbenzenes as a Route to Valuable Fragrance and Pharmaceutical Compounds , 2010 .

[14]  I. Kozhevnikov,et al.  Heteropoly acid catalysts in the valorization of the essential oils: Acetoxylation of β-caryophyllene , 2010 .

[15]  K. Jitsukawa,et al.  Wacker-type oxidation of internal olefins using a PdCl2/N,N-dimethylacetamide catalyst system under copper-free reaction conditions. , 2009, Angewandte Chemie.

[16]  Arno Behr,et al.  Myrcene as a natural base chemical in sustainable chemistry: a critical review. , 2009, ChemSusChem.

[17]  E. V. Gusevskaya,et al.  Palladium-Catalyzed Oxidation of Phenyl-Substituted Alkenes using Molecular Oxygen as the Sole Oxidant , 2009 .

[18]  E. V. Gusevskaya,et al.  Aerobic Palladium(II)/Copper(II)-Catalyzed Oxidation of Olefins under Chloride-Free Nonacidic Conditions , 2009 .

[19]  I. D. Ivanchikova,et al.  Titanium-Doped Solid Core-Mesoporous Shell Silica Particles: Synthesis and Catalytic Properties in Selective Oxidation Reactions , 2009 .

[20]  N. Maksimchuk,et al.  Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates , 2008 .

[21]  J. Bäckvall,et al.  Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer--a biomimetic approach. , 2008, Angewandte Chemie.

[22]  E. V. Gusevskaya,et al.  Palladium-Catalyzed Oxidation of Monoterpenes: Novel Aerobic Pd(II)/Cu(II)-Catalyzed Oxidation of Linalool under Chloride-Free Nonacidic Conditions , 2007 .

[23]  J. Muzart Molecular oxygen to regenerate Pd(II) active species. , 2006, Chemistry, an Asian journal.

[24]  M. Sigman,et al.  Mechanistic questions about the reaction of molecular oxygen with palladium in oxidase catalysis. , 2006, Angewandte Chemie.

[25]  E. Breitmaier Terpenes: Flavors, Fragrances, Pharmaca, Pheromones , 2006 .

[26]  K. Ebitani,et al.  Convenient and efficient Pd-catalyzed regioselective oxyfunctionalization of terminal olefins by using molecular oxygen as sole reoxidant. , 2006, Angewandte Chemie.

[27]  J. F. Arteaga,et al.  Regio- and Enantioselective Functionalization of Acyclic Polyprenoids † , 2006 .

[28]  D. Piló‐Veloso,et al.  Palladium catalyzed oxidation of monoterpenes: NMR study of palladium(II)–monoterpene interactions , 2005 .

[29]  Shannon S Stahl,et al.  Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover. , 2004, Angewandte Chemie.

[30]  José Luiz Mazzei,et al.  Análise química quantitativa para a padronização do óleo de copaíba por cromatografia em fase gasosa de alta resolução , 2004 .

[31]  K. Swift,et al.  Catalytic Transformations of the Major Terpene Feedstocks , 2004 .

[32]  C. Veloso,et al.  Catalytic Conversion of Terpenes into Fine Chemicals , 2004 .

[33]  R. Alves,et al.  Palladium catalyzed transformations of monoterpenes: stereoselective deuteriation and oxidative dimerization of camphene , 2004 .

[34]  M. White,et al.  A sulfoxide-promoted, catalytic method for the regioselective synthesis of allylic acetates from monosubstituted olefins via C-H oxidation. , 2004, Journal of the American Chemical Society.

[35]  A. Tkachev The chemistry of caryophyllene and related compounds , 1987, Chemistry of Natural Compounds.

[36]  B. Demirci,et al.  Betulenols from Betula species. , 2000, Planta medica.

[37]  H. Sheridan,et al.  Sesquiterpenes from Leontopodium alpinum , 1999 .

[38]  I. G. Collado,et al.  Recent advances in the chemistry of caryophyllene , 1998 .

[39]  H. Surburg,et al.  Common Fragrance and Flavor Materials: Preparation, Properties and Uses , 1997 .

[40]  J. Bäckvall,et al.  Aerobic palladium-heteropolyacid-catalyzed allylic acetoxylation of cyclohexene , 1996 .

[41]  J. Chalchat,et al.  Hydroformylations of some monoterpenes and sesquiterpenes from essential oils , 1991 .

[42]  J. Bäckvall,et al.  Evidence for (π-allyl)palladium(II)(quinone) complexes in the palladium-catalyzed 1,4-diacetoxylation of conjugated dienes , 1988 .

[43]  J. Smidt,et al.  Katalytische Umsetzungen von Olefinen an Platinmetall‐Verbindungen Das Consortium‐Verfahren zur Herstellung von Acetaldehyd , 1959 .