Data structures and load balancing for parallel adaptive hp finite-element methods☆

Abstract Adaptive hp finite-element methods (FEM), in which both grid size h and local polynomial order p are dynamically altered, are very effective discretization schemes for the numerical solution of a large class of partial differential equations. However, these schemes generate computations that require dynamic and irregular patterns of data storage, access, and computation, making their use on multiprocessor machines very difficult. We describe here the development of a suite of data structures and load balancing techniques that addresses these concerns. The central idea is the use of a spatially local ordering of all data and computation using a key generated from geometric data using a space filling curves-based ordering for data storage, distribution, and access. We also evaluate the suitability of tree and table type data structures for adaptive meshing. Example applications and performance data complete the presentation.

[1]  Vipin Kumar,et al.  Multilevel Diffusion Schemes for Repartitioning of Adaptive Meshes , 1997, J. Parallel Distributed Comput..

[2]  Boleslaw K. Szymanski,et al.  Distributed Octree Data Structures and Local Refinement Method for the Parallel Solution of Three-Dimensional Conservation Laws , 1999 .

[3]  A. Perez,et al.  Peano scanning of arbitrary size images , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[4]  William Y. Crutchfield,et al.  Object-Oriented Implementation of Adaptive Mesh Refinement Algorithms , 1993, Sci. Program..

[5]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[6]  Karen Dragon Devine,et al.  Parallel adaptive hp -refinement techniques for conservation laws , 1996 .

[7]  Robert L. Kruse,et al.  Data structures and program design in C , 1986 .

[8]  Marsha J. Berger,et al.  Structured Adaptive Mesh Refinement on the Connection Machine , 1993, PPSC.

[9]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[10]  J. Tinsley Oden,et al.  Computational techniques for adaptive hp finite element methods , 1997 .

[11]  David E. Keyes,et al.  Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, PPSC 1993, Norfolk, Virginia, USA, March 22-24, 1993 , 1993, PPSC.

[12]  Olof B. Widlund,et al.  Iterative Substructuring Methods for Spectral Element Discretizations of Elliptic Systems I: Compressible Linear Elasticity , 1999, SIAM J. Numer. Anal..

[13]  J.C. Browne,et al.  A Common Data Management Infrastructure for Adaptive Algorithms for PDE Solutions , 1997, ACM/IEEE SC 1997 Conference (SC'97).

[14]  Gerhard W. Zumbusch Dynamic Load Balancing in a Lightweight Adaptive Parallel Multigrid PDE Solver , 1999, PPSC.

[15]  J. D. Teresco,et al.  Parallel structures and dynamic load balancing for adaptive finite element computation , 1998 .

[16]  Saumyendra Sengupta,et al.  C++ object-oriented data structures , 1994 .

[17]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[18]  Weiming Cao,et al.  Domain decomposition method for the h-p version finite element method , 1998 .

[19]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[20]  Joel H. Saltz,et al.  Support for distributed dynamic data structures in C , 1995 .

[21]  Scott B. Baden,et al.  Efficient Run-Time Support for Irregular Block-Structured Applications , 1998, J. Parallel Distributed Comput..

[22]  J. Tinsley Oden,et al.  Problem decomposition for adaptive hp finite element methods , 1995 .

[23]  Michael Lindenbaum,et al.  On the metric properties of discrete space-filling curves , 1996, IEEE Trans. Image Process..

[24]  Joseph E. Flaherty,et al.  Grid generation and adaptive algorithms , 1999 .

[25]  I. Babuska,et al.  Efficient preconditioning for the p -version finite element method in two dimensions , 1991 .

[26]  Yusheng Feng,et al.  Parallel Domain Decomposition Solver for Adaptive hp Finite Element Methods , 1997 .

[27]  Bruce Hendrickson,et al.  Dynamic load balancing in computational mechanics , 2000 .

[28]  H. Sagan Space-filling curves , 1994 .

[29]  Boleslaw K. Szymanski,et al.  Adaptive Local Refinement with Octree Load Balancing for the Parallel Solution of Three-Dimensional Conservation Laws , 1997, J. Parallel Distributed Comput..