Seismic performance assessment of isolated bridges for different limit states

[1]  Paolo Clemente,et al.  Seismic isolation: past, present and the importance of SHM for the future , 2017, Journal of Civil Structural Health Monitoring.

[2]  Paolo Castaldo,et al.  Seismic fragility and reliability of structures isolated by friction pendulum devices: seismic reliability‐based design (SRBD) , 2017 .

[3]  Paolo Castaldo,et al.  Optimal design of friction pendulum system properties for isolated structures considering different soil conditions , 2016 .

[4]  Paolo Castaldo,et al.  Life-cycle cost and seismic reliability analysis of 3D systems equipped with FPS for different isolation degrees , 2016 .

[5]  A. M. Halabian,et al.  Optimal semi-active control of seismically excited MR-equipped nonlinear buildings using FLC and multi-objective NSGAII algorithms considering ground excitations , 2016, Journal of Civil Structural Health Monitoring.

[6]  Luca Landi,et al.  Comparison of different models for friction pendulum isolators in structures subjected to horizontal and vertical ground motions , 2016 .

[7]  Enrico Tubaldi,et al.  Influence of FPS bearing properties on the seismic performance of base‐isolated structures , 2015 .

[8]  Paolo Castaldo,et al.  Seismic reliability of base-isolated structures with friction pendulum bearings , 2015 .

[9]  Lap-Loi Chung,et al.  Optimal frictional coefficient of structural isolation system , 2015 .

[10]  B. Palazzo,et al.  Seismic reliability analysis of base-isolated structures with friction pendulum system , 2014, 2014 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems Proceedings.

[11]  Yongbo Peng,et al.  Nonlinear Response of Structures Subjected to Stochastic Excitations via Probability Density Evolution Method , 2014 .

[12]  Fevzi Sarıtaş,et al.  Dynamic Behavior of an Isolated Bridge Pier under Earthquake Effects for Different Soil layers and Support Conditions , 2014 .

[13]  N. Fallah,et al.  Multi-objective optimal design of sliding base isolation using genetic algorithm , 2012 .

[14]  Touraj Taghikhany,et al.  Multi-Stage Performance of Seismically Isolated Bridge Using Triple Pendulum Bearings , 2012 .

[15]  Michele Barbato,et al.  A probabilistic performance-based risk assessment approach for seismic pounding with efficient application to linear systems , 2012 .

[16]  Theodore L. Karavasilis,et al.  Seismic structural and non-structural performance evaluation of highly damped self-centering and conventional systems , 2011 .

[17]  T. T. Soong,et al.  Assessment of the separation necessary to prevent seismic pounding between linear structural systems , 2009 .

[18]  Reginald DesRoches,et al.  Bridge seismic response as a function of the Friction Pendulum System (FPS) modeling assumptions , 2008 .

[19]  Chung Bang Yun,et al.  Seismic response characteristics of bridges using double concave friction pendulum bearings with tri-linear behavior , 2007 .

[20]  Cornell C. Allin,et al.  Seismic reliability analysis of structures , 2007 .

[21]  Andrew S. Whittaker,et al.  Performance of Seismic Isolation Hardware under Service and Seismic Loading , 2007 .

[22]  Julian J. Bommer,et al.  Using spectral matched records to explore the influence of strong-motion duration on inelastic structural response , 2007 .

[23]  Hirokazu Iemura,et al.  Optimum Design of Resilient Sliding Isolation System for Seismic Protection of Equipments , 2007 .

[24]  Julian J. Bommer,et al.  A State-of-Knowledge Review of the Influence of Strong-Motion Duration on Structural Damage , 2006 .

[25]  Eduardo Miranda,et al.  Probability-based seismic response analysis , 2005 .

[26]  R. S. Jangid Optimum friction pendulum system for near-fault motions , 2005 .

[27]  R. S. Jangid SEISMIC RESPONSE OF ISOLATED BRIDGES , 2004 .

[28]  Anil K. Chopra,et al.  Estimation of Seismic Demands on Isolators Based on Nonlinear Analysis , 2004 .

[29]  Andrew S. Whittaker,et al.  Characterization and Modeling of Friction Pendulum Bearings Subjected to Multiple Components of Excitation , 2004 .

[30]  Chunxiang Li,et al.  GROUND MOTION DOMINANT FREQUENCY EFFECT ON THE DESIGN OF MULTIPLE TUNED MASS DAMPERS , 2004 .

[31]  Juan Carlos de la Llera,et al.  Physical model for dynamic analysis of structures with FPS isolators , 2003 .

[32]  R. S. Jangid,et al.  Seismic response of isolated bridges with soil-structure interaction , 2003 .

[33]  Steven R. Winterstein,et al.  Probabilistic seismic demand analysis of controlled steel moment‐resisting frame structures , 2002 .

[34]  K. Kawashima,et al.  Seismic design and retrofit of bridges , 2000 .

[35]  R. S. Jangid Optimum frictional elements in sliding isolation systems , 2000 .

[36]  Helmut J. Pradlwarter,et al.  Reliability of MDOF-systems with hysteretic devices , 1998 .

[37]  Panos Tsopelas,et al.  Experimental study of bridge seismic sliding isolation systems , 1996 .

[38]  James M. Kelly,et al.  Earthquake-Resistant Design with Rubber , 1993 .

[39]  M. Shinozuka,et al.  Simulation of Stochastic Processes by Spectral Representation , 1991 .

[40]  Arnaud Deraemaeker Dynamics of structures , 1990 .

[41]  Stephen A. Mahin,et al.  A Simple Pendulum Technique for Achieving Seismic Isolation , 1990 .

[42]  Andrei M. Reinhorn,et al.  Teflon Bearings in Base Isolation I: Testing , 1990 .

[43]  Andrei M. Reinhorn,et al.  Teflon Bearings in Base Isolation II: Modeling , 1990 .

[44]  Goodarz Ahmadi,et al.  Comparative study of base isolation systems , 1989 .

[45]  Kiyoshi Kanai,et al.  Semi-empirical Formula for the Seismic Characteristics of the Ground , 1957 .

[46]  I. Zentner,et al.  Generation of spectrum compatible ground motion and its use in regulatory and performance-based seismic analysis , 2014 .

[47]  Keith Porter,et al.  An Overview of PEER's Performance-Based Earthquake Engineering Methodology , 2003 .

[48]  R. S. Jangid,et al.  Effects of superstructure flexibility on the response of base-isolated structures , 2003 .

[49]  G. D. Manolis,et al.  RISK ANALYSIS OF INDUSTRIAL STRUCTURES WITH HAZARDOUS MATERIALS UNDER SEISMIC INPUT , 2002 .

[50]  K. Chang,et al.  Seismic Performance of Highway Bridges , 2000 .

[51]  サイバネットシステム,et al.  MATLAB : high-performance numeric computation and visualization software : エクスターナルインタフェースガイド , 1994 .

[52]  Masanobu Shinozuka,et al.  Simulation of Nonstationary Random Process , 1967 .

[53]  H. Tajimi,et al.  Statistical Method of Determining the Maximum Response of Building Structure During an Earthquake , 1960 .