Genomic Sequencing of SARS-COV-2 in Rwanda: evolution and regional dynamics
暂无分享,去创建一个
N. Loman | J. Quick | A. Rambaut | V. Bours | W. Ndifon | G. Baele | J. Souopgui | Á. O'toole | V. Hill | L. Mutesa | S. Rooke | S. Nsanzimana | T. Mpunga | K. Durkin | S. Dellicour | Bouchra Boujemla | P. Resende | S. Hong | S. Bontems | Alice Kabanda | R. Rutayisire | N. Rujeni | M. Artesi | Y. Butera | D. Gikic | R. Sindayiheba | D. Ngamije | J. Rwabihama | Patrick Tuyisenge | Á. O’Toole | Onesphore Majyambere | Enatha Mukantwari | Esperance Umumararungu | Marylin Milumbu Murindahabi | Misbah Gashegu | Swaibu Gatare | Jeanne D’Arc Umuringa | Stefan Rooke
[1] T. Ndung’u,et al. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma , 2021, Nature.
[2] N. G. Davies,et al. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7 , 2021, Nature.
[3] Nuno R. Faria,et al. Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil , 2021, medRxiv.
[4] P. Kaleebu,et al. A SARS-CoV-2 lineage A variant (A.23.1) with altered spike has emerged and is dominating the current Uganda epidemic , 2021, medRxiv.
[5] A. Sigal,et al. Escape of SARS-CoV-2 501Y.V2 variants from neutralization by convalescent plasma , 2021, medRxiv.
[6] B. Graham,et al. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants , 2021, bioRxiv.
[7] N. Loman,et al. Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data , 2021, medRxiv.
[8] N. Turok,et al. A pooled testing strategy for identifying SARS-CoV-2 at low prevalence , 2020, Nature.
[9] M. Suchard,et al. Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2 , 2020, Nature Communications.
[10] Edward C. Holmes,et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology , 2020, Nature Microbiology.
[11] J. Kadota,et al. The COVID-19 pandemic and the true incidence of Tuberculosis in Japan , 2020, Journal of Infection.
[12] A. von Haeseler,et al. Corrigendum to: IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2020, Molecular biology and evolution.
[13] J. Shogren,et al. Do the Benefits of COVID‐19 Policies Exceed the Costs? Exploring Uncertainties in the Age–VSL Relationship , 2020, Risk analysis : an official publication of the Society for Risk Analysis.
[14] Guy Baele,et al. A Phylodynamic Workflow to Rapidly Gain Insights into the Dispersal History and Dynamics of SARS-CoV-2 Lineages , 2020, bioRxiv.
[15] M. Hoffmann,et al. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells , 2020, Molecular Cell.
[16] S. Eubank,et al. Commentary on Ferguson, et al., “Impact of Non-pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand” , 2020, Bulletin of Mathematical Biology.
[17] R. Trimble. COVID-19 Dashboard , 2020 .
[18] Hannah R. Meredith,et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application , 2020, Annals of Internal Medicine.
[19] Nikki E. Freed,et al. Rapid and inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp tiled amplicons and Oxford Nanopore Rapid Barcoding , 2020, bioRxiv.
[20] Olga Chernomor,et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.
[21] T. Bell,et al. Community-level signatures of ecological succession in natural bacterial communities , 2019, bioRxiv.
[22] Daniel L. Ayres,et al. BEAGLE 3: Improved Performance, Scaling, and Usability for a High-Performance Computing Library for Statistical Phylogenetics , 2019, Systematic biology.
[23] M. Suchard,et al. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.
[24] Daniel L. Ayres,et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 , 2018, Virus evolution.
[25] Kiran Kondabagil,et al. The number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses , 2018, Virus evolution.
[26] Heng Li,et al. Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..
[27] Heng Li. Sequence analysis Minimap2: pairwise alignment for nucleotide sequences , 2018 .
[28] Trevor Bedford,et al. Nextstrain: real-time tracking of pathogen evolution , 2017, bioRxiv.
[29] Richard A Neher,et al. TreeTime: Maximum-likelihood phylodynamic analysis , 2017, bioRxiv.
[30] Yuelong Shu,et al. GISAID: Global initiative on sharing all influenza data – from vision to reality , 2017, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.
[31] Stefan Elbe,et al. Data, disease and diplomacy: GISAID's innovative contribution to global health , 2017, Global challenges.
[32] P. Sagulenko. Maximum likelihood phylodynamic analysis , 2017 .
[33] Rebecca Rose,et al. SERAPHIM: studying environmental rasters and phylogenetically informed movements , 2016, Bioinform..
[34] A. Rambaut,et al. MERS-CoV recombination: implications about the reservoir and potential for adaptation , 2015, bioRxiv.
[35] M. Suchard,et al. Phylogeography takes a relaxed random walk in continuous space and time. , 2010, Molecular biology and evolution.
[36] Alexei J. Drummond,et al. Bayesian Phylogeography Finds Its Roots , 2009, PLoS Comput. Biol..
[37] Marc A Suchard,et al. Fast, accurate and simulation-free stochastic mapping , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.
[38] Marc A Suchard,et al. Counting labeled transitions in continuous-time Markov models of evolution , 2007, Journal of mathematical biology.