A Geometric View of Posterior Approximation
暂无分享,去创建一个
[1] J. Lafferty,et al. Riemannian Geometry and Statistical Machine Learning , 2015 .
[2] Babak Shahbaba,et al. Spherical Hamiltonian Monte Carlo for Constrained Target Distributions , 2013, ICML.
[3] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[4] Babak Shahbaba,et al. Split Hamiltonian Monte Carlo , 2011, Stat. Comput..
[5] Mátyás A. Sustik,et al. Sparse Approximate Manifolds for Differential Geometric MCMC , 2012, NIPS.
[6] J. M. Sanz-Serna,et al. Hybrid Monte Carlo on Hilbert spaces , 2011 .
[7] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.
[8] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[9] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[10] Christian P. Robert,et al. A vanilla Rao--Blackwellization of Metropolis--Hastings algorithms , 2009, 0904.2144.
[11] Radford M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .
[12] Liam Paninski,et al. Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains , 2011, Neural Computation.
[13] Chao Yang,et al. Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC , 2009 .
[14] Jean-Michel Marin,et al. Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..
[15] R. Douc,et al. Minimum variance importance sampling via Population Monte Carlo , 2007 .
[16] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[17] Max Welling,et al. Accelerated Variational Dirichlet Process Mixtures , 2006, NIPS.
[18] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[19] J. Møller,et al. An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants , 2006 .
[20] Anthony Brockwell. Parallel Markov chain Monte Carlo Simulation by Pre-Fetching , 2006 .
[21] Kaare Brandt Petersen,et al. The Matrix Cookbook , 2006 .
[22] Radford M. Neal. The Short-Cut Metropolis Method , 2005, math/0508060.
[23] Thomas P. Minka,et al. Divergence measures and message passing , 2005 .
[24] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[25] Radford M. Neal. Slice Sampling , 2000, physics/0009028.
[26] Matthew J. Beal. Variational algorithms for approximate Bayesian inference , 2003 .
[27] Tom Minka,et al. Expectation Propagation for approximate Bayesian inference , 2001, UAI.
[28] Nando de Freitas,et al. Variational MCMC , 2001, UAI.
[29] G. Warnes. The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .
[30] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[31] Michael I. Jordan,et al. Bayesian parameter estimation via variational methods , 2000, Stat. Comput..
[32] G. Roberts,et al. Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .
[33] G. Roberts,et al. Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .
[34] Radford M. Neal. Sampling from multimodal distributions using tempered transitions , 1996, Stat. Comput..
[35] David Bruce Wilson,et al. Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.
[36] Bin Yu,et al. Regeneration in Markov chain samplers , 1995 .
[37] Huaiyu Zhu,et al. Information geometric measurements of generalisation , 1995 .
[38] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[39] A. Dawid. Further Comments on Some Comments on a Paper by Bradley Efron , 1977 .
[40] L. Goddard. Information Theory , 1962, Nature.