Observations of the electrical behaviour of catalytically grown scrolled graphene

[1]  Samia Subrina,et al.  Dimensional crossover of thermal transport in few-layer graphene. , 2010, Nature materials.

[2]  Huajian Gao,et al.  Tunable water channels with carbon nanoscrolls. , 2010, Small.

[3]  F. Guinea,et al.  Effect of external conditions on the structure of scrolled graphene edges , 2010, 1002.3418.

[4]  Y. Bando,et al.  Interface Dynamic Behavior Between a Carbon Nanotube and Metal Electrode , 2010, Advanced materials.

[5]  A. Chuvilin,et al.  Chiral carbon nanoscrolls with a polygonal cross-section , 2009 .

[6]  G. Ceder,et al.  Polygonal model for layered inorganic nanotubes , 2009 .

[7]  Xu Xie,et al.  Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. , 2009, Nano letters.

[8]  J. Zou,et al.  Two‐probe electrical measurements in transmission electron microscopes—Behavioral control of tungsten microwires , 2009, Microscopy research and technique.

[9]  Y. Tison,et al.  The Inner Shell Influence on the Electronic Structure of Double‐Walled Carbon Nanotubes , 2008 .

[10]  Mauricio Terrones,et al.  In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. , 2007, Nature nanotechnology.

[11]  R. Li,et al.  Controlled synthesis of pointed carbon nanotubes , 2007 .

[12]  L. Qin,et al.  Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction. , 2007, Physical chemistry chemical physics : PCCP.

[13]  Jing Lu,et al.  Structural and Electronic Study of Nanoscrolls Rolled up by a Single Graphene Sheet , 2007 .

[14]  M. Tsutsui,et al.  Electrical breakdown of short multiwalled carbon nanotubes , 2006 .

[15]  M. Heggie,et al.  First Principles Modelling of Scroll-to-Nanotube Defect: Screw-Type Dislocation , 2006 .

[16]  Z. Chang,et al.  Probing the intrinsic conductivity of multiwalled carbon nanotubes , 2006 .

[17]  D. Galvão,et al.  Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: First-principles calculations , 2006 .

[18]  C. Zhi,et al.  In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope , 2006 .

[19]  Sheng Wang,et al.  Establishing Ohmic contacts for in situ current–voltage characteristic measurements on a carbon nanotube inside the scanning electron microscope , 2006, Nanotechnology.

[20]  J. Haruyama,et al.  Superconductivity in entirely end-bonded multiwalled carbon nanotubes. , 2006 .

[21]  M. P. Anantram,et al.  Physics of carbon nanotube electronic devices , 2006 .

[22]  A. Krasheninnikov,et al.  Bending the rules: Contrasting vacancy energetics and migration in graphite and carbon nanotubes , 2006 .

[23]  Lianmao Peng,et al.  Fabrication and Electrical and Mechanical Properties of Carbon Nanotube Interconnections , 2005 .

[24]  H J Li,et al.  Multichannel ballistic transport in multiwall carbon nanotubes. , 2005, Physical review letters.

[25]  H. Pan,et al.  Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet , 2005 .

[26]  C. N. Lau,et al.  Ballistic phonon thermal transport in multiwalled carbon nanotubes. , 2005, Physical review letters.

[27]  M. Dresselhaus,et al.  Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. , 2005, Physical review letters.

[28]  P. Lambin,et al.  Diffraction by DNA, carbon nanotubes and other helical nanostructures , 2005 .

[29]  M. Anantram,et al.  Ballistic transport and electrostatics in metallic carbon nanotubes , 2005, IEEE Transactions on Nanotechnology.

[30]  M. Anantram,et al.  Effect of scattering and contacts on current and electrostatics in carbon nanotubes , 2005, cond-mat/0503769.

[31]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Haoqing Hou,et al.  Multi-Walled Carbon Nanotubes without and with Metal Filling , 2005 .

[33]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[34]  D. Glattli,et al.  Determination of the intershell conductance in multiwalled carbon nanotubes. , 2004, Physical review letters.

[35]  D. Tománek,et al.  Stability differences and conversion mechanism between nanotubes and scrolls , 2004 .

[36]  J. Haruyama,et al.  End-bonding multiwalled carbon nanotubes in alumina templates: Superconducting proximity effect , 2004 .

[37]  Quanshun Li,et al.  Current saturation in multiwalled carbon nanotubes by large bias , 2004 .

[38]  F. Banhart,et al.  The Engineering of Hot Carbon Nanotubes with a Focused Electron Beam , 2004 .

[39]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[40]  J. Berroir,et al.  Geometrical dependence of high-bias current in multiwalled carbon nanotubes. , 2003, Physical review letters.

[41]  J. Zuo,et al.  Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction , 2003 .

[42]  C. Berger,et al.  Room Temperature Ballistic Conduction in Carbon Nanotubes , 2002, cond-mat/0211515.

[43]  M. Yudasaka,et al.  A Top-Gate Carbon-Nanotube Field-Effect Transistor with a Titanium-Dioxide Insulator , 2002 .

[44]  S. Iijima,et al.  Linking chiral indices and transport properties of double-walled carbon nanotubes. , 2002, Physical review letters.

[45]  A. Greiner,et al.  Carbon Nanotubes and Spheres Produced by Modified Ferrocene Pyrolysis , 2002 .

[46]  Phaedon Avouris,et al.  Molecular electronics with carbon nanotubes. , 2002, Accounts of chemical research.

[47]  P. Avouris,et al.  Multishell conduction in multiwalled carbon nanotubes , 2002 .

[48]  C. Schönenberger,et al.  Multiwall carbon nanotubes as quantum dots. , 2001, Physical review letters.

[49]  David E. Luzzi,et al.  Electron irradiation effects in single wall carbon nanotubes , 2001 .

[50]  M. Sakata,et al.  Multiwalled carbon nanotubes grown in hydrogen atmosphere : An x-ray diffraction study , 2001 .

[51]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[52]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[53]  P. Avouris,et al.  Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.

[54]  Zhong Lin Wang,et al.  Structure and growth of aligned carbon nanotube films by pyrolysis , 2000 .

[55]  M. Anantram Current-carrying capacity of carbon nanotubes , 1999, cond-mat/9912467.

[56]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[57]  Kwon,et al.  Fractional quantum conductance in carbon nanotubes , 1999, Physical review letters.

[58]  S. Louie,et al.  Disorder, Pseudospins, and Backscattering in Carbon Nanotubes , 1999, cond-mat/9906055.

[59]  Bingqing Wei,et al.  ELECTRICAL TRANSPORT IN PURE AND BORON-DOPED CARBON NANOTUBES , 1999 .

[60]  C. Schönenberger,et al.  Interference and Interaction in multi-wall carbon nanotubes , 1999, cond-mat/9905144.

[61]  Liming Dai,et al.  Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films , 1999 .

[62]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[63]  Supriyo Datta,et al.  A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes , 1999 .

[64]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[65]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[66]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[67]  S. Bandow Radial Thermal Expansion of Purified Multiwall Carbon Nanotubes Measured by X-ray Diffraction , 1997 .

[68]  Pulickel M. Ajayan,et al.  The formation, annealing and self-compression of carbon onions under electron irradiation , 1997 .

[69]  Charlier,et al.  Electronic properties of carbon nanotubes with polygonized cross sections. , 1996, Physical review. B, Condensed matter.

[70]  Charles M. Lieber,et al.  Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes , 1996, Science.

[71]  Neumann,et al.  X-ray powder diffraction from carbon nanotubes and nanoparticles. , 1995, Physical review. B, Condensed matter.

[72]  X. B. Zhang,et al.  A Structure Model and Growth Mechanism for Multishell Carbon Nanotubes , 1995, Science.

[73]  C. H. Chen,et al.  Defects in Carbon Nanostructures , 1994, Science.

[74]  Roger Bacon,et al.  Growth, Structure, and Properties of Graphite Whiskers , 1960 .

[75]  A. Greiner,et al.  Multi-wall carbon nanotubes with uniform chirality: evidence for scroll structures , 2003 .

[76]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[77]  S. Amelinckx,et al.  The Geometry of Multishell Nanotubes , 1998 .

[78]  R. Chang,et al.  Supercarbon : synthesis, properties and applications , 1998 .

[79]  J. Spreadborough The frictional behaviour of graphite , 1962 .