Quantile regression for partially linear varying-coefficient model with censoring indicators missing at random

In this paper, we focus on the partially linear varying-coefficient quantile regression model when the data are right censored and the censoring indicator is missing at random. Based on the calibration and imputation methods, a three-stage approach is proposed to construct the estimators of the linear part and the nonparametric varying-coefficient function for this model . At the same time, we discuss the variable selection of the covariates in the linear part by adopting adaptive LASSO penalty. Under appropriate assumptions, the asymptotic normality of the proposed estimators is established, and the penalized estimators are proven to have the oracle property. Simulation study and a real data analysis are conducted to evaluate the performance of the proposed estimators.

[1]  Runze Li,et al.  Variable Selection in Semiparametric Regression Modeling. , 2008, Annals of statistics.

[2]  Zhiliang Ying,et al.  Survival analysis with median regression models , 1995 .

[3]  Junshan Shen,et al.  Estimation and confidence bands of a conditional survival function with censoring indicators missing at random , 2008 .

[4]  Lan Wang,et al.  Locally Weighted Censored Quantile Regression , 2009 .

[5]  R. Koenker Quantile Regression: Fundamentals of Quantile Regression , 2005 .

[6]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[7]  Chenlei Leng,et al.  A quantile regression estimator for censored data , 2013, 1302.0181.

[8]  Yong Zhou,et al.  Quantile regression methods with varying-coefficient models for censored data , 2015, Comput. Stat. Data Anal..

[9]  Jianhui Zhou,et al.  Quantile regression in partially linear varying coefficient models , 2009, 0911.3501.

[10]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[11]  Keith Knight,et al.  Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .

[12]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[13]  Hui Li,et al.  Censored quantile regression with varying coefficients , 2014 .

[14]  Gregg E Dinse,et al.  Linear regression analysis of survival data with missing censoring indicators , 2011, Lifetime data analysis.

[15]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[16]  Clifford Lam,et al.  PROFILE-KERNEL LIKELIHOOD INFERENCE WITH DIVERGING NUMBER OF PARAMETERS. , 2008, Annals of statistics.

[17]  Sundarraman Subramanian,et al.  Asymptotically efficient estimation of a survival function in the missing censoring indicator model , 2004 .

[18]  H. Zou,et al.  Composite quantile regression and the oracle Model Selection Theory , 2008, 0806.2905.

[19]  Xin-Yuan Song,et al.  Local Polynomial Fitting in Semivarying Coefficient Model , 2002 .

[20]  Lan Wang,et al.  Weighted quantile regression for analyzing health care cost data with missing covariates , 2013, Statistics in medicine.

[21]  Jing Sun,et al.  An improved and efficient estimation method for varying-coefficient model with missing covariates , 2015 .

[22]  Runze Li,et al.  NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS. , 2011, Annals of statistics.

[23]  R. Koenker,et al.  Regression Quantiles , 2007 .

[24]  Qi Li,et al.  Efficient estimation of a semiparametric partially linear varying coefficient model , 2005, math/0504510.

[25]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[26]  Zongwu Cai,et al.  Semiparametric quantile regression estimation in dynamic models with partially varying coefficients , 2012 .

[27]  D. Pollard Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.

[28]  Qihua Wang,et al.  ASYMPTOTICALLY EFFICIENT PRODUCT-LIMIT ESTIMATORS WITH CENSORING INDICATORS MISSING AT RANDOM , 2008 .

[29]  Linjun Tang,et al.  Weighted local linear CQR for varying-coefficient models with missing covariates , 2015 .

[30]  R. Gray,et al.  Tamoxifen versus placebo: double-blind adjuvant trial in elderly women with stage II breast cancer. , 1986, NCI monographs : a publication of the National Cancer Institute.

[31]  Yong Zhou,et al.  A kernel-assisted imputation estimating method for the additive hazards model with missing censoring indicator , 2015 .

[32]  Xinyuan Song,et al.  Additive hazards regression with censoring indicators missing at random , 2010, The Canadian journal of statistics = Revue canadienne de statistique.

[33]  Hu Yang,et al.  Penalized weighted composite quantile estimators with missing covariates , 2016 .

[34]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[35]  Qihua Wang,et al.  The weighted least square based estimators with censoring indicators missing at random , 2012 .

[36]  Wenqing He,et al.  Median Regression Models for Longitudinal Data with Dropouts , 2009, Biometrics.