Quantum Information Theory
暂无分享,去创建一个
[1] Andreas J. Winter. Coding theorems of quantum information theory , 1999 .
[2] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[3] David Elkouss,et al. Unbounded number of channel uses may be required to detect quantum capacity , 2014, Nature Communications.
[4] P. Grangier,et al. Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .
[5] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[6] Otto Stern,et al. Das magnetische Moment des Silberatoms , 1922 .
[7] Alexander S. Holevo,et al. The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.
[8] Andreas J. Winter,et al. The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels , 2009, IEEE Transactions on Information Theory.
[9] A. Uhlmann. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .
[10] C. H. Bennett,et al. Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.
[11] Samuel L. Braunstein,et al. A quantum analog of huffman coding , 2000, IEEE Trans. Inf. Theory.
[12] Min-Hsiu Hsieh,et al. Secret-key-assisted private classical communication capacity over quantum channels , 2008 .
[13] P. Horodecki. Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.
[14] Louis de Broglie,et al. Recherches sur la théorie des quanta , 1925 .
[15] Andreas J. Winter,et al. Random quantum codes from Gaussian ensembles and an uncertainty relation , 2007, Open Syst. Inf. Dyn..
[16] R. Glauber. The Quantum Theory of Optical Coherence , 1963 .
[17] R. Renner,et al. The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.
[18] R. Werner,et al. Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.
[19] Andreas J. Winter,et al. On the Distributed Compression of Quantum Information , 2006, IEEE Transactions on Information Theory.
[20] Andreas J. Winter,et al. A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.
[21] Dave Touchette,et al. Trade-off capacities of the quantum Hadamard channels , 2010, ArXiv.
[22] M. Horodecki,et al. Universal Quantum Information Compression , 1998, quant-ph/9805017.
[23] E. Knill,et al. Reversing quantum dynamics with near-optimal quantum and classical fidelity , 2000, quant-ph/0004088.
[24] Saikat Guha,et al. Explicit receivers for pure-interference bosonic multiple access channels , 2012, 2012 International Symposium on Information Theory and its Applications.
[25] D. Griffiths,et al. Introduction to Quantum Mechanics , 1960 .
[26] A. Holevo,et al. On Reliability Function of Quantum Communication Channel , 1997 .
[27] Christopher King,et al. Properties of Conjugate Channels with Applications to Additivity and Multiplicativity , 2005 .
[28] Graeme Smith. Private classical capacity with a symmetric side channel and its application to quantum cryptography , 2007, 0705.3838.
[29] M. Hastings. Superadditivity of communication capacity using entangled inputs , 2009 .
[30] Nick Herbert. FLASH—A superluminal communicator based upon a new kind of quantum measurement , 1982 .
[31] John Preskill,et al. Achievable rates for the Gaussian quantum channel , 2001, quant-ph/0105058.
[32] M. Planck. Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .
[33] A. Holevo. On entanglement-assisted classical capacity , 2001, quant-ph/0106075.
[34] I. Devetak,et al. Exact cost of redistributing multipartite quantum states. , 2006, Physical review letters.
[35] Saikat Guha,et al. Classical Information Capacity of the Bosonic Broadcast Channel , 2007, 2007 IEEE International Symposium on Information Theory.
[36] Toby Berger,et al. Rate distortion theory : a mathematical basis for data compression , 1971 .
[37] M. Hayashi. Exponents of quantum fixed-length pure-state source coding , 2002, quant-ph/0202002.
[38] Dorit Aharonov,et al. Fault-tolerant quantum computation with constant error , 1997, STOC '97.
[39] Saikat Guha,et al. Information trade-offs for optical quantum communication , 2012, Physical review letters.
[40] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[41] Tomohiro Ogawa,et al. Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.
[42] Ekert,et al. Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.
[43] Richard Jozsa,et al. Universal quantum information compression and degrees of prior knowledge , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[44] P. Elias. The Efficient Construction of an Unbiased Random Sequence , 1972 .
[45] Andreas Winter,et al. Partial quantum information , 2005, Nature.
[46] A. Winter,et al. Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[47] Mark M. Wilde,et al. Public and private resource trade-offs for a quantum channel , 2010, Quantum Inf. Process..
[48] Alexander S. Holevo,et al. Reliability function of general classical-Quantum channel , 1999, IEEE Trans. Inf. Theory.
[49] Mark M. Wilde,et al. Classical Codes for Quantum Broadcast Channels , 2011, IEEE Transactions on Information Theory.
[50] Seth Lloyd,et al. Achieving the Holevo bound via sequential measurements , 2010, 1012.0386.
[51] Paul Hausladen,et al. Sending Classical Bits via Quantum Its , 1995 .
[52] A. Jenčová. REVERSIBILITY CONDITIONS FOR QUANTUM OPERATIONS , 2011, 1107.0453.
[53] Andreas J. Winter,et al. “Pretty Strong” Converse for the Quantum Capacity of Degradable Channels , 2013, IEEE Transactions on Information Theory.
[54] R. Renner,et al. One-Shot Decoupling , 2010, 1012.6044.
[55] C. Helstrom. Quantum detection and estimation theory , 1969 .
[56] Nilanjana Datta,et al. Second-Order Asymptotics for Source Coding, Dense Coding, and Pure-State Entanglement Conversions , 2014, IEEE Transactions on Information Theory.
[57] J. Kemperman,et al. On the Optimum Rate of Transmitting Information , 1969 .
[58] Mark M. Wilde,et al. Strong converse for the classical capacity of all phase-insensitive bosonic Gaussian channels , 2014, ArXiv.
[59] Schumacher,et al. Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[60] Andreas J. Winter,et al. A family of quantum protocols , 2004, ISIT.
[61] L. Grafakos. Classical Fourier Analysis , 2010 .
[62] C. H. Bennett,et al. Quantum Information and Computation , 1995 .
[63] Igal Sason,et al. Entropy Bounds for Discrete Random Variables via Maximal Coupling , 2012, IEEE Transactions on Information Theory.
[64] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[65] W. Stinespring. Positive functions on *-algebras , 1955 .
[66] A. D. Wyner,et al. The wire-tap channel , 1975, The Bell System Technical Journal.
[67] Seth Lloyd,et al. Sequential projective measurements for channel decoding. , 2010, Physical review letters.
[68] M. Horodecki. Limits for compression of quantum information carried by ensembles of mixed states , 1997, quant-ph/9712035.
[69] Mark M. Wilde,et al. Public and private communication with a quantum channel and a secret key , 2009, 0903.3920.
[70] R. Glauber. Coherent and incoherent states of the radiation field , 1963 .
[71] Aram Harrow. Coherent communication of classical messages. , 2004, Physical review letters.
[72] Howard Barnum,et al. On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.
[73] V. Scarani,et al. The security of practical quantum key distribution , 2008, 0802.4155.
[74] Michal Horodecki,et al. A Decoupling Approach to the Quantum Capacity , 2007, Open Syst. Inf. Dyn..
[75] Denes Petz,et al. Structure of Sufficient Quantum Coarse-Grainings , 2004 .
[76] Ueli Maurer,et al. Small accessible quantum information does not imply security. , 2007, Physical review letters.
[77] P. Horodecki,et al. Quantum redundancies and local realism , 1994 .
[78] Mark M. Wilde,et al. Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.
[79] Michael D. Westmoreland,et al. Sending classical information via noisy quantum channels , 1997 .
[80] W. Heisenberg. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen , 1925 .
[81] A. Einstein. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.
[82] Charles H. Bennett. A resource-based view of quantum information , 2004, Quantum Inf. Comput..
[83] Debbie W. Leung,et al. The locking-decoding frontier for generic dynamics , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[84] Rajagopal Nagarajan,et al. On feedback and the classical capacity of a noisy quantum channel , 2005, IEEE Transactions on Information Theory.
[85] R. Feynman. Simulating physics with computers , 1999 .
[86] John R. Pierce,et al. The early days of information theory , 1973, IEEE Trans. Inf. Theory.
[87] Greg Kuperberg,et al. The capacity of hybrid quantum memory , 2002, IEEE Trans. Inf. Theory.
[88] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[89] M. Junge,et al. Multiplicativity of Completely Bounded p-Norms Implies a New Additivity Result , 2005, quant-ph/0506196.
[90] A. Winter,et al. Entropic uncertainty relations—a survey , 2009, 0907.3704.
[91] F. Brandão,et al. Faithful Squashed Entanglement , 2010, 1010.1750.
[92] K. Audenaert. A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.
[93] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[94] M. Hamada. Information rates achievable with algebraic codes on quantum discrete memoryless channels , 2005, IEEE Transactions on Information Theory.
[95] E. Jaynes. Probability theory : the logic of science , 2003 .
[96] Christopher King,et al. Comments on Hastings’ Additivity Counterexamples , 2009, 0905.3697.
[97] C. King. The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.
[98] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[99] Mark M. Wilde,et al. Joint source–channel coding for a quantum multiple access channel , 2012, ArXiv.
[100] Andreas J. Winter,et al. Entanglement-Assisted Capacity of Quantum Multiple-Access Channels , 2008, IEEE Transactions on Information Theory.
[101] Mark M. Wilde,et al. Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication , 2014, Communications in Mathematical Physics.
[102] J. Mullins. The topsy turvy world of quantum computing , 2001 .
[103] E. Lieb. Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .
[104] Fernando G S L Brandão,et al. Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution. , 2014, Physical review letters.
[105] Robert König,et al. The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.
[106] Saikat Guha,et al. Quantum trade-off coding for bosonic communication , 2011, ArXiv.
[107] Wojciech H. Zurek. Einselection and Decoherence from an Information Theory Perspective , 2000 .
[108] Nilanjana Datta,et al. One-Shot Entanglement-Assisted Quantum and Classical Communication , 2011, IEEE Transactions on Information Theory.
[109] P. Shor,et al. Broadband channel capacities , 2003, quant-ph/0307098.
[110] R. Renner,et al. One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.
[111] Mark M. Wilde,et al. Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity , 2013, ArXiv.
[112] Igor Devetak,et al. Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.
[113] Renato Renner,et al. Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.
[114] Rochus Klesse,et al. A Random Coding Based Proof for the Quantum Coding Theorem , 2007, Open Syst. Inf. Dyn..
[115] John Preskill,et al. Upper and lower bounds on quantum codes , 2006 .
[116] Jon Yard. Simultaneous classical-quantum capacities of quantum multiple access channels , 2005 .
[117] Andreas J. Winter,et al. Weak Locking Capacity of Quantum Channels Can be Much Larger Than Private Capacity , 2014, Journal of Cryptology.
[118] M. Ruskai,et al. Entanglement Breaking Channels , 2003, quant-ph/0302031.
[119] Benjamin Schumacher,et al. Approximate Quantum Error Correction , 2002, Quantum Inf. Process..
[120] I. Devetak,et al. Triangle of dualities between quantum communication protocols. , 2006, Physical review letters.
[121] Imre Csiszár,et al. Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.
[122] Baron Kelvin William Thomson. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light: NINETEENTH CENTURY CLOUDS OVER THE DYNAMICAL THEORY OF HEAT AND LIGHT , 1901 .
[123] R. Renner,et al. Uncertainty relation for smooth entropies. , 2010, Physical review letters.
[124] Dennis Kretschmann. Information Transfer through Quantum Channels , 2007 .
[125] Stephen Wiesner,et al. Conjugate coding , 1983, SIGA.
[126] W. Heisenberg. A quantum-theoretical reinterpretation of kinematic and mechanical relations , 1925 .
[127] A. Abeyesinghe,et al. Unification of quantum information theory , 2006 .
[128] M. Fannes. A continuity property of the entropy density for spin lattice systems , 1973 .
[129] Eric M. Rains. A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.
[130] M. Wolf,et al. Quantum capacities of bosonic channels. , 2006, Physical review letters.
[131] B. Moor,et al. Asymptotic relative entropy of entanglement for orthogonally invariant states , 2002, quant-ph/0204143.
[132] H. Lo,et al. Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.
[133] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[134] Mark M. Wilde. Comment on ''Secret-key-assisted private classical communication capacity over quantum channels'' , 2011 .
[135] Alexander Semenovich Holevo. Statistical problems in quantum physics , 1973 .
[136] Jeffrey H. Shapiro,et al. Multiple-access Bosonic communications , 2005, SPIE International Symposium on Fluctuations and Noise.
[137] Gottesman. Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[138] S. Virmani,et al. LETTER TO THE EDITOR: Operator monotones, the reduction criterion and the relative entropy , 2000, quant-ph/0002075.
[139] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[140] M. Nielsen,et al. Quantum information theory , 2010 .
[141] Mario Berta,et al. Entanglement cost of quantum channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[142] J. Neumann. Mathematical Foundations of Quantum Mechanics , 1955 .
[143] Igor Devetak. The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.
[144] J. J. Sakurai,et al. Modern Quantum Mechanics , 1986 .
[145] Holger Boche,et al. The classical-quantum multiple access channel with conferencing encoders and with common messages , 2014, Quantum Inf. Process..
[146] Charles H. Bennett,et al. Quantum cryptography without Bell's theorem. , 1992, Physical review letters.
[147] E. Schrödinger. Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.
[148] Seth Lloyd,et al. Reverse coherent information. , 2008, Physical review letters.
[149] W. Zurek,et al. Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.
[150] Christopher King,et al. Entanglement of random subspaces via the Hastings bound , 2009, 0907.5446.
[151] Pawel Horodecki,et al. Purely quantum superadditivity of classical capacities of quantum multiple access channels. , 2009, Physical review letters.
[152] V. Vedral,et al. Entanglement measures and purification procedures , 1997, quant-ph/9707035.
[153] T. Beth,et al. Codes for the quantum erasure channel , 1996, quant-ph/9610042.
[154] H. Umegaki. Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .
[155] Masahito Hayashi,et al. General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.
[156] Charles H. Bennett,et al. Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.
[157] Mark M. Wilde,et al. Fidelity of recovery, geometric squashed entanglement, and measurement recoverability , 2014, 1410.1441.
[158] Jacob Wolfowitz. Coding Theorems of Information Theory , 1962 .
[159] Carlton M. Caves,et al. Mathematical techniques for quantum communication theory , 1995 .
[160] G. Lindblad. Completely positive maps and entropy inequalities , 1975 .
[161] M. Nielsen. Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.
[162] Mark M. Wilde,et al. Trading classical communication, quantum communication, and entanglement in quantum Shannon theory , 2009, IEEE Transactions on Information Theory.
[163] Mario Berta,et al. Monotonicity of quantum relative entropy and recoverability , 2014, Quantum Inf. Comput..
[164] P. Horodecki,et al. Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network , 2009, 0906.1305.
[165] Debbie W. Leung,et al. Remote preparation of quantum states , 2005, IEEE Transactions on Information Theory.
[166] P. Shor,et al. The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.
[167] S. Braunstein,et al. Impossibility of deleting an unknown quantum state , 2000, Nature.
[168] 林 正人. Quantum information : an introduction , 2006 .
[169] Ke Li,et al. A Father Protocol for Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.
[170] V. Scarani,et al. Quantum cloning , 2005, quant-ph/0511088.
[171] Nicolas Dutil,et al. Multiparty quantum protocols for assisted entanglement distillation , 2011, 1105.4657.
[172] Hoi-Kwong Lo,et al. Classical Communication Cost of Entanglement Manipulation: Is Entanglement an Interconvertible Resource? , 1999, quant-ph/9902045.
[173] N. Datta,et al. The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.
[174] Pranab Sen,et al. Classical Communication Over a Quantum Interference Channel , 2011, IEEE Transactions on Information Theory.
[175] Jeroen van de Graaf,et al. Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.
[176] Andreas J. Winter,et al. Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.
[177] Igor Devetak,et al. Capacity theorems for quantum multiple-access channels: classical-quantum and quantum-quantum capacity regions , 2008, IEEE Transactions on Information Theory.
[178] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[179] Seth Lloyd,et al. Quantum enigma machines and the locking capacity of a quantum channel , 2013, ArXiv.
[180] Mark M. Wilde,et al. Trade-off coding for universal qudit cloners motivated by the Unruh effect , 2011, 1103.0286.
[181] E. Lieb,et al. Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .
[182] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[183] Pranab Sen,et al. From Low-Distortion Norm Embeddings to Explicit Uncertainty Relations and Efficient Information Locking , 2010, JACM.
[184] Zhengmin Zhang,et al. Estimating Mutual Information Via Kolmogorov Distance , 2007, IEEE Transactions on Information Theory.
[185] Masahito Hayashi. Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding , 2006, quant-ph/0611013.
[186] R. Bhatia. Matrix Analysis , 1996 .
[187] A. Winter,et al. Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.
[188] Michael D. Westmoreland,et al. Quantum Privacy and Quantum Coherence , 1997, quant-ph/9709058.
[189] Mark M. Wilde,et al. Unified quantum convolutional coding , 2008, 2008 IEEE International Symposium on Information Theory.
[190] Mark M Wilde,et al. Multipartite quantum correlations and local recoverability , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[191] Unruh. Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[192] M. Nielsen,et al. Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.
[193] Graeme Smith,et al. Quantum Communication with Zero-Capacity Channels , 2008, Science.
[194] Peter W. Shor,et al. Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[195] A. Wehrl. General properties of entropy , 1978 .
[196] Charles H. Bennett,et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.
[197] Howard Barnum,et al. On the reversible extraction of classical information from a quantum source , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[198] Erwin Schrödinger,et al. Quantisierung als Eigenwertproblem , 1925 .
[199] Elias M. Stein,et al. Interpolation of linear operators , 1956 .
[200] J. Smolin,et al. Degenerate quantum codes for Pauli channels. , 2006, Physical review letters.
[201] Masahito Hayashi,et al. Entanglement concentration is irreversible. , 2013, Physical review letters.
[202] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[203] Nilanjana Datta,et al. Universal coding for transmission of private information , 2010, 1007.2629.
[204] Nilanjana Datta,et al. The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.
[205] A. Winter,et al. Trading quantum for classical resources in quantum data compression , 2002, quant-ph/0204038.
[206] E. Lieb,et al. A Fundamental Property of Quantum-Mechanical Entropy , 1973 .
[207] Raymond W. Yeung,et al. A First Course in Information Theory , 2002 .
[208] Jonathan P Dowling,et al. Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[209] J. Preskill. Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[210] M. Horodecki,et al. Locking classical correlations in quantum States. , 2003, Physical review letters.
[211] Patrick J. Coles,et al. Uncertainty relations from simple entropic properties. , 2011, Physical review letters.
[212] E. Knill,et al. Resilient Quantum Computation , 1998 .
[213] M. Fannes,et al. Continuity of quantum conditional information , 2003, quant-ph/0312081.
[214] Debbie W. Leung,et al. Classical capacity of a noiseless quantum channel assisted by noisy entanglement , 2001, Quantum Inf. Comput..
[215] Hoi-Kwong Lo,et al. A tight lower bound on the classical communication cost of entanglement dilution , 2004, IEEE Transactions on Information Theory.
[216] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[217] M. Nielsen. A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.
[218] P. Shor,et al. QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.
[219] Nilanjana Datta,et al. Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.
[220] Garry Bowen. FEEDBACK IN QUANTUM COMMUNICATION , 2004 .
[221] Marco Tomamichel,et al. Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.
[222] S. Wehner,et al. A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.
[223] Marco Dalai,et al. Lower Bounds on the Probability of Error for Classical and Classical-Quantum Channels , 2012, IEEE Transactions on Information Theory.
[224] Steane,et al. Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.
[225] Andreas J. Winter. The capacity of the quantum multiple-access channel , 2001, IEEE Trans. Inf. Theory.
[226] Marco Tomamichel,et al. A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.
[227] Saikat Guha,et al. Multiple-user quantum information theory for optical communication channels , 2008 .
[228] Nilanjana Datta,et al. Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.
[229] Schumacher,et al. Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[230] P. Shor. Equivalence of Additivity Questions in Quantum Information Theory , 2003, quant-ph/0305035.
[231] Charles H. Bennett,et al. Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.
[232] Charles H. Bennett,et al. Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[233] Gilles Brassard,et al. Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..
[234] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[235] Adi Shamir,et al. A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.
[236] Mark M. Wilde,et al. Entanglement generation with a quantum channel and a shared state , 2009, 2010 IEEE International Symposium on Information Theory.
[237] R. Landauer. Is quantum mechanics useful , 1995 .
[238] Peter W. Shor,et al. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.
[239] Andrei Khrennikov. Introduction to quantum information theory , 2008 .
[240] V. Filev. ! ii ! Acknowledgements ! ! ! , 2004 .
[241] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[242] C. Fuchs. Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.
[243] J. Smolin,et al. Quantum communication with Gaussian channels of zero quantum capacity , 2011 .
[244] Garry Bowen. Quantum feedback channels , 2004, IEEE Transactions on Information Theory.
[245] Andreas J. Winter,et al. Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1 , 2008, ArXiv.
[246] P. Shor,et al. Entanglement assisted capacity of the broadband Lossy channel. , 2003, Physical review letters.
[247] Seth Lloyd,et al. Quantum-locked key distribution at nearly the classical capacity rate. , 2014, Physical review letters.
[248] Junde Wu,et al. A lower bound of quantum conditional mutual information , 2014, 1403.1424.
[249] Mark M. Wilde,et al. Coherent communication with continuous quantum variables , 2007 .
[250] M. Ozawa. Entanglement measures and the Hilbert-Schmidt distance , 2000, quant-ph/0002036.
[251] Schumacher,et al. Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[252] I. Devetak,et al. Classical data compression with quantum side information , 2003 .
[253] C. Adami,et al. Negative entropy and information in quantum mechanics , 1995, quant-ph/9512022.
[254] A. Winter,et al. Quantum privacy and quantum wiretap channels , 2004 .
[255] John T. Lewis,et al. An operational approach to quantum probability , 1970 .
[256] Ivan Savov,et al. Network information theory for classical-quantum channels , 2012, ArXiv.
[257] S. Lloyd. Capacity of the noisy quantum channel , 1996, quant-ph/9604015.
[258] I Devetak,et al. Relating quantum privacy and quantum coherence: an operational approach. , 2004, Physical review letters.
[259] Mark M. Wilde,et al. Sequential decoding of a general classical-quantum channel , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[260] A. Holevo,et al. A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .
[261] A. Winter,et al. Communication cost of entanglement transformations , 2002, quant-ph/0204092.
[262] William Matthews,et al. Finite Blocklength Converse Bounds for Quantum Channels , 2012, IEEE Transactions on Information Theory.
[263] A. Winter,et al. Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.
[264] D. Petz. Sufficient subalgebras and the relative entropy of states of a von Neumann algebra , 1986 .
[265] A. Calderbank,et al. Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.
[266] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.
[267] M. Mosca,et al. Quantum networks for concentrating entanglement , 2001, quant-ph/0101009.
[268] C. Adami,et al. VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS , 1996 .
[269] Mario Berta,et al. Rényi squashed entanglement, discord, and relative entropy differences , 2014, ArXiv.
[270] Giuseppe Longo,et al. The information theory approach to communications , 1977 .
[271] Wojciech H. Zurek,et al. John Wheeler, relativity, and quantum information , 2009 .
[272] Oscar Zarate,et al. Introducing Quantum Theory , 1992 .
[273] A. Winter,et al. Private capacity of quantum channels is not additive. , 2009, Physical review letters.
[274] R. Renner,et al. Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.
[275] I. Hirschman,et al. A convexity theorem for certain groups of transformations , 1952 .
[276] W. Wootters,et al. A single quantum cannot be cloned , 1982, Nature.
[277] Nilanjana Datta,et al. Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.
[278] Igor Devetak,et al. Capacity theorems for quantum multiple access channels , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[279] Ashish V. Thapliyal,et al. Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.
[280] Joseph M Renes,et al. Structured codes improve the Bennett-Brassard-84 quantum key rate. , 2008, Physical review letters.
[281] N. Smith,et al. The Ionosphere and Magnetic Storms , 1937 .
[282] S. Lloyd,et al. Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.
[283] J. Shapiro,et al. Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture , 2007, 0706.3416.
[284] Raymond W. Yeung,et al. A First Course in Information Theory (Information Technology: Transmission, Processing and Storage) , 2006 .
[285] L. B. Levitin. On the quantum measure of information , 1996 .
[286] S. Lloyd,et al. Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results , 2010, 1004.4787.
[287] S. Lloyd,et al. Minimum output entropy of bosonic channels: A conjecture , 2004, quant-ph/0404005.
[288] Mario Berta,et al. Renyi generalizations of the conditional quantum mutual information , 2014, ArXiv.
[289] Igor Devetak,et al. Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder , 2007, IEEE Transactions on Information Theory.
[290] A. Winter,et al. Communications in Mathematical Physics Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality , 2022 .
[291] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[292] C. King. Additivity for unital qubit channels , 2001, quant-ph/0103156.
[293] J. L. Lawson,et al. The Design of a Magnetic Spectrometer and the Measurement of the Beta-Ray Spectra of Phosphorus, Sodium and Cobalt. , 1939 .
[294] L. Brown. :The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory , 2004 .
[295] A. Winter,et al. Error exponents for entanglement concentration , 2002, quant-ph/0206097.
[296] V. Giovannetti,et al. Information-capacity description of spin-chain correlations , 2004, quant-ph/0405110.
[297] Saikat Guha,et al. Capacity of the bosonic wiretap channel and the Entropy Photon-Number Inequality , 2008, 2008 IEEE International Symposium on Information Theory.
[298] Min-Hsiu Hsieh,et al. Classical Enhancement of Quantum Error-Correcting Codes , 2008, 0802.2414.
[299] R. Glauber,et al. One Hundred Years of Light Quanta , 2006 .
[300] R. Jozsa. Fidelity for Mixed Quantum States , 1994 .
[301] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[302] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[303] A. Winter. ‘‘Extrinsic’’ and ‘‘Intrinsic’’ Data in Quantum Measurements: Asymptotic Convex Decomposition of Positive Operator Valued Measures , 2001, quant-ph/0109050.
[304] Mark M. Wilde,et al. Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.
[305] Laflamme,et al. Perfect Quantum Error Correcting Code. , 1996, Physical review letters.
[306] M. Tomamichel. A framework for non-asymptotic quantum information theory , 2012, 1203.2142.
[307] R. Jozsa,et al. On quantum coding for ensembles of mixed states , 2000, quant-ph/0008024.
[308] Rudolf Ahlswede,et al. Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.
[309] D. Petz. SUFFICIENCY OF CHANNELS OVER VON NEUMANN ALGEBRAS , 1988 .
[310] B. S. Cirel'son. Quantum generalizations of Bell's inequality , 1980 .
[311] M. Ozawa. Quantum measuring processes of continuous observables , 1984 .
[312] Tomohiro Ogawa,et al. Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing , 2007, IEEE Transactions on Information Theory.
[313] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[314] C. H. Bennett,et al. Universal quantum data compression via nondestructive tomography , 2004, quant-ph/0403078.
[315] Abbas El Gamal,et al. Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).
[316] A. Winter,et al. The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[317] Benjamin Schumacher,et al. A new proof of the quantum noiseless coding theorem , 1994 .
[318] Mark M. Wilde,et al. The quantum dynamic capacity formula of a quantum channel , 2010, Quantum Inf. Process..
[319] Ming-Yong Ye,et al. Quantum state redistribution based on a generalized decoupling , 2008 .
[320] A. Winter,et al. Compression of quantum-measurement operations , 2000, quant-ph/0012128.
[321] D. Petz,et al. Quantum Entropy and Its Use , 1993 .
[322] P. Shor. Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.
[323] C. H. Bennett,et al. Remote state preparation. , 2000, Physical review letters.
[324] M. Horodecki,et al. Quantum State Merging and Negative Information , 2005, quant-ph/0512247.
[325] D. Dieks. Communication by EPR devices , 1982 .
[326] E. Lieb,et al. Remainder terms for some quantum entropy inequalities , 2014, 1402.3840.
[327] Michal Horodecki,et al. On Hastings' Counterexamples to the Minimum Output Entropy Additivity Conjecture , 2009, Open Syst. Inf. Dyn..
[328] Imre Csiszár,et al. Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .
[329] T. Heinosaari,et al. The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement , 2012 .
[330] P. Hayden,et al. Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication , 2003, quant-ph/0308143.
[331] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[332] Guillaume Aubrun,et al. Hastings’s Additivity Counterexample via Dvoretzky’s Theorem , 2010, 1003.4925.
[333] Hoi-Kwong Lo. Quantum coding theorem for mixed states , 1995 .
[334] F. Dupuis. The decoupling approach to quantum information theory , 2010, 1004.1641.
[335] M. Wolf,et al. Quantum capacities of channels with small environment , 2006, quant-ph/0607070.