Quantum Information Theory

Finally, here is a modern, self-contained text on quantum information theory suitable for graduate-level courses. Developing the subject 'from the ground up' it covers classical results as well as major advances of the past decade. Beginning with an extensive overview of classical information theory suitable for the non-expert, the author then turns his attention to quantum mechanics for quantum information theory, and the important protocols of teleportation, super-dense coding and entanglement distribution. He develops all of the tools necessary for understanding important results in quantum information theory, including capacity theorems for classical, entanglement-assisted, private and quantum communication. The book also covers important recent developments such as superadditivity of private, coherent and Holevo information, and the superactivation of quantum capacity. This book will be warmly welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theorists.

[1]  Andreas J. Winter Coding theorems of quantum information theory , 1999 .

[2]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[3]  David Elkouss,et al.  Unbounded number of channel uses may be required to detect quantum capacity , 2014, Nature Communications.

[4]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[5]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[6]  Otto Stern,et al.  Das magnetische Moment des Silberatoms , 1922 .

[7]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[8]  Andreas J. Winter,et al.  The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels , 2009, IEEE Transactions on Information Theory.

[9]  A. Uhlmann Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .

[10]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[11]  Samuel L. Braunstein,et al.  A quantum analog of huffman coding , 2000, IEEE Trans. Inf. Theory.

[12]  Min-Hsiu Hsieh,et al.  Secret-key-assisted private classical communication capacity over quantum channels , 2008 .

[13]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[14]  Louis de Broglie,et al.  Recherches sur la théorie des quanta , 1925 .

[15]  Andreas J. Winter,et al.  Random quantum codes from Gaussian ensembles and an uncertainty relation , 2007, Open Syst. Inf. Dyn..

[16]  R. Glauber The Quantum Theory of Optical Coherence , 1963 .

[17]  R. Renner,et al.  The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.

[18]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[19]  Andreas J. Winter,et al.  On the Distributed Compression of Quantum Information , 2006, IEEE Transactions on Information Theory.

[20]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[21]  Dave Touchette,et al.  Trade-off capacities of the quantum Hadamard channels , 2010, ArXiv.

[22]  M. Horodecki,et al.  Universal Quantum Information Compression , 1998, quant-ph/9805017.

[23]  E. Knill,et al.  Reversing quantum dynamics with near-optimal quantum and classical fidelity , 2000, quant-ph/0004088.

[24]  Saikat Guha,et al.  Explicit receivers for pure-interference bosonic multiple access channels , 2012, 2012 International Symposium on Information Theory and its Applications.

[25]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[26]  A. Holevo,et al.  On Reliability Function of Quantum Communication Channel , 1997 .

[27]  Christopher King,et al.  Properties of Conjugate Channels with Applications to Additivity and Multiplicativity , 2005 .

[28]  Graeme Smith Private classical capacity with a symmetric side channel and its application to quantum cryptography , 2007, 0705.3838.

[29]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[30]  Nick Herbert FLASH—A superluminal communicator based upon a new kind of quantum measurement , 1982 .

[31]  John Preskill,et al.  Achievable rates for the Gaussian quantum channel , 2001, quant-ph/0105058.

[32]  M. Planck Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .

[33]  A. Holevo On entanglement-assisted classical capacity , 2001, quant-ph/0106075.

[34]  I. Devetak,et al.  Exact cost of redistributing multipartite quantum states. , 2006, Physical review letters.

[35]  Saikat Guha,et al.  Classical Information Capacity of the Bosonic Broadcast Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[36]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[37]  M. Hayashi Exponents of quantum fixed-length pure-state source coding , 2002, quant-ph/0202002.

[38]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[39]  Saikat Guha,et al.  Information trade-offs for optical quantum communication , 2012, Physical review letters.

[40]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[41]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[42]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[43]  Richard Jozsa,et al.  Universal quantum information compression and degrees of prior knowledge , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[44]  P. Elias The Efficient Construction of an Unbiased Random Sequence , 1972 .

[45]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[46]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  Mark M. Wilde,et al.  Public and private resource trade-offs for a quantum channel , 2010, Quantum Inf. Process..

[48]  Alexander S. Holevo,et al.  Reliability function of general classical-Quantum channel , 1999, IEEE Trans. Inf. Theory.

[49]  Mark M. Wilde,et al.  Classical Codes for Quantum Broadcast Channels , 2011, IEEE Transactions on Information Theory.

[50]  Seth Lloyd,et al.  Achieving the Holevo bound via sequential measurements , 2010, 1012.0386.

[51]  Paul Hausladen,et al.  Sending Classical Bits via Quantum Its , 1995 .

[52]  A. Jenčová REVERSIBILITY CONDITIONS FOR QUANTUM OPERATIONS , 2011, 1107.0453.

[53]  Andreas J. Winter,et al.  “Pretty Strong” Converse for the Quantum Capacity of Degradable Channels , 2013, IEEE Transactions on Information Theory.

[54]  R. Renner,et al.  One-Shot Decoupling , 2010, 1012.6044.

[55]  C. Helstrom Quantum detection and estimation theory , 1969 .

[56]  Nilanjana Datta,et al.  Second-Order Asymptotics for Source Coding, Dense Coding, and Pure-State Entanglement Conversions , 2014, IEEE Transactions on Information Theory.

[57]  J. Kemperman,et al.  On the Optimum Rate of Transmitting Information , 1969 .

[58]  Mark M. Wilde,et al.  Strong converse for the classical capacity of all phase-insensitive bosonic Gaussian channels , 2014, ArXiv.

[59]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[60]  Andreas J. Winter,et al.  A family of quantum protocols , 2004, ISIT.

[61]  L. Grafakos Classical Fourier Analysis , 2010 .

[62]  C. H. Bennett,et al.  Quantum Information and Computation , 1995 .

[63]  Igal Sason,et al.  Entropy Bounds for Discrete Random Variables via Maximal Coupling , 2012, IEEE Transactions on Information Theory.

[64]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[65]  W. Stinespring Positive functions on *-algebras , 1955 .

[66]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[67]  Seth Lloyd,et al.  Sequential projective measurements for channel decoding. , 2010, Physical review letters.

[68]  M. Horodecki Limits for compression of quantum information carried by ensembles of mixed states , 1997, quant-ph/9712035.

[69]  Mark M. Wilde,et al.  Public and private communication with a quantum channel and a secret key , 2009, 0903.3920.

[70]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[71]  Aram Harrow Coherent communication of classical messages. , 2004, Physical review letters.

[72]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.

[73]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[74]  Michal Horodecki,et al.  A Decoupling Approach to the Quantum Capacity , 2007, Open Syst. Inf. Dyn..

[75]  Denes Petz,et al.  Structure of Sufficient Quantum Coarse-Grainings , 2004 .

[76]  Ueli Maurer,et al.  Small accessible quantum information does not imply security. , 2007, Physical review letters.

[77]  P. Horodecki,et al.  Quantum redundancies and local realism , 1994 .

[78]  Mark M. Wilde,et al.  Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.

[79]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[80]  W. Heisenberg Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen , 1925 .

[81]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[82]  Charles H. Bennett A resource-based view of quantum information , 2004, Quantum Inf. Comput..

[83]  Debbie W. Leung,et al.  The locking-decoding frontier for generic dynamics , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[84]  Rajagopal Nagarajan,et al.  On feedback and the classical capacity of a noisy quantum channel , 2005, IEEE Transactions on Information Theory.

[85]  R. Feynman Simulating physics with computers , 1999 .

[86]  John R. Pierce,et al.  The early days of information theory , 1973, IEEE Trans. Inf. Theory.

[87]  Greg Kuperberg,et al.  The capacity of hybrid quantum memory , 2002, IEEE Trans. Inf. Theory.

[88]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[89]  M. Junge,et al.  Multiplicativity of Completely Bounded p-Norms Implies a New Additivity Result , 2005, quant-ph/0506196.

[90]  A. Winter,et al.  Entropic uncertainty relations—a survey , 2009, 0907.3704.

[91]  F. Brandão,et al.  Faithful Squashed Entanglement , 2010, 1010.1750.

[92]  K. Audenaert A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.

[93]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[94]  M. Hamada Information rates achievable with algebraic codes on quantum discrete memoryless channels , 2005, IEEE Transactions on Information Theory.

[95]  E. Jaynes Probability theory : the logic of science , 2003 .

[96]  Christopher King,et al.  Comments on Hastings’ Additivity Counterexamples , 2009, 0905.3697.

[97]  C. King The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.

[98]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[99]  Mark M. Wilde,et al.  Joint source–channel coding for a quantum multiple access channel , 2012, ArXiv.

[100]  Andreas J. Winter,et al.  Entanglement-Assisted Capacity of Quantum Multiple-Access Channels , 2008, IEEE Transactions on Information Theory.

[101]  Mark M. Wilde,et al.  Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication , 2014, Communications in Mathematical Physics.

[102]  J. Mullins The topsy turvy world of quantum computing , 2001 .

[103]  E. Lieb Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .

[104]  Fernando G S L Brandão,et al.  Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution. , 2014, Physical review letters.

[105]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[106]  Saikat Guha,et al.  Quantum trade-off coding for bosonic communication , 2011, ArXiv.

[107]  Wojciech H. Zurek Einselection and Decoherence from an Information Theory Perspective , 2000 .

[108]  Nilanjana Datta,et al.  One-Shot Entanglement-Assisted Quantum and Classical Communication , 2011, IEEE Transactions on Information Theory.

[109]  P. Shor,et al.  Broadband channel capacities , 2003, quant-ph/0307098.

[110]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[111]  Mark M. Wilde,et al.  Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity , 2013, ArXiv.

[112]  Igor Devetak,et al.  Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.

[113]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[114]  Rochus Klesse,et al.  A Random Coding Based Proof for the Quantum Coding Theorem , 2007, Open Syst. Inf. Dyn..

[115]  John Preskill,et al.  Upper and lower bounds on quantum codes , 2006 .

[116]  Jon Yard Simultaneous classical-quantum capacities of quantum multiple access channels , 2005 .

[117]  Andreas J. Winter,et al.  Weak Locking Capacity of Quantum Channels Can be Much Larger Than Private Capacity , 2014, Journal of Cryptology.

[118]  M. Ruskai,et al.  Entanglement Breaking Channels , 2003, quant-ph/0302031.

[119]  Benjamin Schumacher,et al.  Approximate Quantum Error Correction , 2002, Quantum Inf. Process..

[120]  I. Devetak,et al.  Triangle of dualities between quantum communication protocols. , 2006, Physical review letters.

[121]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[122]  Baron Kelvin William Thomson Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light: NINETEENTH CENTURY CLOUDS OVER THE DYNAMICAL THEORY OF HEAT AND LIGHT , 1901 .

[123]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[124]  Dennis Kretschmann Information Transfer through Quantum Channels , 2007 .

[125]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[126]  W. Heisenberg A quantum-theoretical reinterpretation of kinematic and mechanical relations , 1925 .

[127]  A. Abeyesinghe,et al.  Unification of quantum information theory , 2006 .

[128]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[129]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[130]  M. Wolf,et al.  Quantum capacities of bosonic channels. , 2006, Physical review letters.

[131]  B. Moor,et al.  Asymptotic relative entropy of entanglement for orthogonally invariant states , 2002, quant-ph/0204143.

[132]  H. Lo,et al.  Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.

[133]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[134]  Mark M. Wilde Comment on ''Secret-key-assisted private classical communication capacity over quantum channels'' , 2011 .

[135]  Alexander Semenovich Holevo Statistical problems in quantum physics , 1973 .

[136]  Jeffrey H. Shapiro,et al.  Multiple-access Bosonic communications , 2005, SPIE International Symposium on Fluctuations and Noise.

[137]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[138]  S. Virmani,et al.  LETTER TO THE EDITOR: Operator monotones, the reduction criterion and the relative entropy , 2000, quant-ph/0002075.

[139]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[140]  M. Nielsen,et al.  Quantum information theory , 2010 .

[141]  Mario Berta,et al.  Entanglement cost of quantum channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[142]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[143]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[144]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[145]  Holger Boche,et al.  The classical-quantum multiple access channel with conferencing encoders and with common messages , 2014, Quantum Inf. Process..

[146]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[147]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[148]  Seth Lloyd,et al.  Reverse coherent information. , 2008, Physical review letters.

[149]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[150]  Christopher King,et al.  Entanglement of random subspaces via the Hastings bound , 2009, 0907.5446.

[151]  Pawel Horodecki,et al.  Purely quantum superadditivity of classical capacities of quantum multiple access channels. , 2009, Physical review letters.

[152]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[153]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[154]  H. Umegaki Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .

[155]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[156]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[157]  Mark M. Wilde,et al.  Fidelity of recovery, geometric squashed entanglement, and measurement recoverability , 2014, 1410.1441.

[158]  Jacob Wolfowitz Coding Theorems of Information Theory , 1962 .

[159]  Carlton M. Caves,et al.  Mathematical techniques for quantum communication theory , 1995 .

[160]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[161]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[162]  Mark M. Wilde,et al.  Trading classical communication, quantum communication, and entanglement in quantum Shannon theory , 2009, IEEE Transactions on Information Theory.

[163]  Mario Berta,et al.  Monotonicity of quantum relative entropy and recoverability , 2014, Quantum Inf. Comput..

[164]  P. Horodecki,et al.  Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network , 2009, 0906.1305.

[165]  Debbie W. Leung,et al.  Remote preparation of quantum states , 2005, IEEE Transactions on Information Theory.

[166]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[167]  S. Braunstein,et al.  Impossibility of deleting an unknown quantum state , 2000, Nature.

[168]  林 正人 Quantum information : an introduction , 2006 .

[169]  Ke Li,et al.  A Father Protocol for Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.

[170]  V. Scarani,et al.  Quantum cloning , 2005, quant-ph/0511088.

[171]  Nicolas Dutil,et al.  Multiparty quantum protocols for assisted entanglement distillation , 2011, 1105.4657.

[172]  Hoi-Kwong Lo,et al.  Classical Communication Cost of Entanglement Manipulation: Is Entanglement an Interconvertible Resource? , 1999, quant-ph/9902045.

[173]  N. Datta,et al.  The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.

[174]  Pranab Sen,et al.  Classical Communication Over a Quantum Interference Channel , 2011, IEEE Transactions on Information Theory.

[175]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[176]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[177]  Igor Devetak,et al.  Capacity theorems for quantum multiple-access channels: classical-quantum and quantum-quantum capacity regions , 2008, IEEE Transactions on Information Theory.

[178]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[179]  Seth Lloyd,et al.  Quantum enigma machines and the locking capacity of a quantum channel , 2013, ArXiv.

[180]  Mark M. Wilde,et al.  Trade-off coding for universal qudit cloners motivated by the Unruh effect , 2011, 1103.0286.

[181]  E. Lieb,et al.  Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .

[182]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[183]  Pranab Sen,et al.  From Low-Distortion Norm Embeddings to Explicit Uncertainty Relations and Efficient Information Locking , 2010, JACM.

[184]  Zhengmin Zhang,et al.  Estimating Mutual Information Via Kolmogorov Distance , 2007, IEEE Transactions on Information Theory.

[185]  Masahito Hayashi Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding , 2006, quant-ph/0611013.

[186]  R. Bhatia Matrix Analysis , 1996 .

[187]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[188]  Michael D. Westmoreland,et al.  Quantum Privacy and Quantum Coherence , 1997, quant-ph/9709058.

[189]  Mark M. Wilde,et al.  Unified quantum convolutional coding , 2008, 2008 IEEE International Symposium on Information Theory.

[190]  Mark M Wilde,et al.  Multipartite quantum correlations and local recoverability , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[191]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[192]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[193]  Graeme Smith,et al.  Quantum Communication with Zero-Capacity Channels , 2008, Science.

[194]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[195]  A. Wehrl General properties of entropy , 1978 .

[196]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[197]  Howard Barnum,et al.  On the reversible extraction of classical information from a quantum source , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[198]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[199]  Elias M. Stein,et al.  Interpolation of linear operators , 1956 .

[200]  J. Smolin,et al.  Degenerate quantum codes for Pauli channels. , 2006, Physical review letters.

[201]  Masahito Hayashi,et al.  Entanglement concentration is irreversible. , 2013, Physical review letters.

[202]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[203]  Nilanjana Datta,et al.  Universal coding for transmission of private information , 2010, 1007.2629.

[204]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[205]  A. Winter,et al.  Trading quantum for classical resources in quantum data compression , 2002, quant-ph/0204038.

[206]  E. Lieb,et al.  A Fundamental Property of Quantum-Mechanical Entropy , 1973 .

[207]  Raymond W. Yeung,et al.  A First Course in Information Theory , 2002 .

[208]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[209]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[210]  M. Horodecki,et al.  Locking classical correlations in quantum States. , 2003, Physical review letters.

[211]  Patrick J. Coles,et al.  Uncertainty relations from simple entropic properties. , 2011, Physical review letters.

[212]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[213]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[214]  Debbie W. Leung,et al.  Classical capacity of a noiseless quantum channel assisted by noisy entanglement , 2001, Quantum Inf. Comput..

[215]  Hoi-Kwong Lo,et al.  A tight lower bound on the classical communication cost of entanglement dilution , 2004, IEEE Transactions on Information Theory.

[216]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[217]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[218]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[219]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[220]  Garry Bowen FEEDBACK IN QUANTUM COMMUNICATION , 2004 .

[221]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[222]  S. Wehner,et al.  A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.

[223]  Marco Dalai,et al.  Lower Bounds on the Probability of Error for Classical and Classical-Quantum Channels , 2012, IEEE Transactions on Information Theory.

[224]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[225]  Andreas J. Winter The capacity of the quantum multiple-access channel , 2001, IEEE Trans. Inf. Theory.

[226]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[227]  Saikat Guha,et al.  Multiple-user quantum information theory for optical communication channels , 2008 .

[228]  Nilanjana Datta,et al.  Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.

[229]  Schumacher,et al.  Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[230]  P. Shor Equivalence of Additivity Questions in Quantum Information Theory , 2003, quant-ph/0305035.

[231]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[232]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[233]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[234]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[235]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[236]  Mark M. Wilde,et al.  Entanglement generation with a quantum channel and a shared state , 2009, 2010 IEEE International Symposium on Information Theory.

[237]  R. Landauer Is quantum mechanics useful , 1995 .

[238]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[239]  Andrei Khrennikov Introduction to quantum information theory , 2008 .

[240]  V. Filev ! ii ! Acknowledgements ! ! ! , 2004 .

[241]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[242]  C. Fuchs Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.

[243]  J. Smolin,et al.  Quantum communication with Gaussian channels of zero quantum capacity , 2011 .

[244]  Garry Bowen Quantum feedback channels , 2004, IEEE Transactions on Information Theory.

[245]  Andreas J. Winter,et al.  Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1 , 2008, ArXiv.

[246]  P. Shor,et al.  Entanglement assisted capacity of the broadband Lossy channel. , 2003, Physical review letters.

[247]  Seth Lloyd,et al.  Quantum-locked key distribution at nearly the classical capacity rate. , 2014, Physical review letters.

[248]  Junde Wu,et al.  A lower bound of quantum conditional mutual information , 2014, 1403.1424.

[249]  Mark M. Wilde,et al.  Coherent communication with continuous quantum variables , 2007 .

[250]  M. Ozawa Entanglement measures and the Hilbert-Schmidt distance , 2000, quant-ph/0002036.

[251]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[252]  I. Devetak,et al.  Classical data compression with quantum side information , 2003 .

[253]  C. Adami,et al.  Negative entropy and information in quantum mechanics , 1995, quant-ph/9512022.

[254]  A. Winter,et al.  Quantum privacy and quantum wiretap channels , 2004 .

[255]  John T. Lewis,et al.  An operational approach to quantum probability , 1970 .

[256]  Ivan Savov,et al.  Network information theory for classical-quantum channels , 2012, ArXiv.

[257]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[258]  I Devetak,et al.  Relating quantum privacy and quantum coherence: an operational approach. , 2004, Physical review letters.

[259]  Mark M. Wilde,et al.  Sequential decoding of a general classical-quantum channel , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[260]  A. Holevo,et al.  A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .

[261]  A. Winter,et al.  Communication cost of entanglement transformations , 2002, quant-ph/0204092.

[262]  William Matthews,et al.  Finite Blocklength Converse Bounds for Quantum Channels , 2012, IEEE Transactions on Information Theory.

[263]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[264]  D. Petz Sufficient subalgebras and the relative entropy of states of a von Neumann algebra , 1986 .

[265]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[266]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[267]  M. Mosca,et al.  Quantum networks for concentrating entanglement , 2001, quant-ph/0101009.

[268]  C. Adami,et al.  VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS , 1996 .

[269]  Mario Berta,et al.  Rényi squashed entanglement, discord, and relative entropy differences , 2014, ArXiv.

[270]  Giuseppe Longo,et al.  The information theory approach to communications , 1977 .

[271]  Wojciech H. Zurek,et al.  John Wheeler, relativity, and quantum information , 2009 .

[272]  Oscar Zarate,et al.  Introducing Quantum Theory , 1992 .

[273]  A. Winter,et al.  Private capacity of quantum channels is not additive. , 2009, Physical review letters.

[274]  R. Renner,et al.  Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.

[275]  I. Hirschman,et al.  A convexity theorem for certain groups of transformations , 1952 .

[276]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[277]  Nilanjana Datta,et al.  Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.

[278]  Igor Devetak,et al.  Capacity theorems for quantum multiple access channels , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[279]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[280]  Joseph M Renes,et al.  Structured codes improve the Bennett-Brassard-84 quantum key rate. , 2008, Physical review letters.

[281]  N. Smith,et al.  The Ionosphere and Magnetic Storms , 1937 .

[282]  S. Lloyd,et al.  Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.

[283]  J. Shapiro,et al.  Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture , 2007, 0706.3416.

[284]  Raymond W. Yeung,et al.  A First Course in Information Theory (Information Technology: Transmission, Processing and Storage) , 2006 .

[285]  L. B. Levitin On the quantum measure of information , 1996 .

[286]  S. Lloyd,et al.  Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results , 2010, 1004.4787.

[287]  S. Lloyd,et al.  Minimum output entropy of bosonic channels: A conjecture , 2004, quant-ph/0404005.

[288]  Mario Berta,et al.  Renyi generalizations of the conditional quantum mutual information , 2014, ArXiv.

[289]  Igor Devetak,et al.  Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder , 2007, IEEE Transactions on Information Theory.

[290]  A. Winter,et al.  Communications in Mathematical Physics Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality , 2022 .

[291]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[292]  C. King Additivity for unital qubit channels , 2001, quant-ph/0103156.

[293]  J. L. Lawson,et al.  The Design of a Magnetic Spectrometer and the Measurement of the Beta-Ray Spectra of Phosphorus, Sodium and Cobalt. , 1939 .

[294]  L. Brown :The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory , 2004 .

[295]  A. Winter,et al.  Error exponents for entanglement concentration , 2002, quant-ph/0206097.

[296]  V. Giovannetti,et al.  Information-capacity description of spin-chain correlations , 2004, quant-ph/0405110.

[297]  Saikat Guha,et al.  Capacity of the bosonic wiretap channel and the Entropy Photon-Number Inequality , 2008, 2008 IEEE International Symposium on Information Theory.

[298]  Min-Hsiu Hsieh,et al.  Classical Enhancement of Quantum Error-Correcting Codes , 2008, 0802.2414.

[299]  R. Glauber,et al.  One Hundred Years of Light Quanta , 2006 .

[300]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[301]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[302]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[303]  A. Winter ‘‘Extrinsic’’ and ‘‘Intrinsic’’ Data in Quantum Measurements: Asymptotic Convex Decomposition of Positive Operator Valued Measures , 2001, quant-ph/0109050.

[304]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[305]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[306]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[307]  R. Jozsa,et al.  On quantum coding for ensembles of mixed states , 2000, quant-ph/0008024.

[308]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[309]  D. Petz SUFFICIENCY OF CHANNELS OVER VON NEUMANN ALGEBRAS , 1988 .

[310]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[311]  M. Ozawa Quantum measuring processes of continuous observables , 1984 .

[312]  Tomohiro Ogawa,et al.  Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing , 2007, IEEE Transactions on Information Theory.

[313]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[314]  C. H. Bennett,et al.  Universal quantum data compression via nondestructive tomography , 2004, quant-ph/0403078.

[315]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[316]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[317]  Benjamin Schumacher,et al.  A new proof of the quantum noiseless coding theorem , 1994 .

[318]  Mark M. Wilde,et al.  The quantum dynamic capacity formula of a quantum channel , 2010, Quantum Inf. Process..

[319]  Ming-Yong Ye,et al.  Quantum state redistribution based on a generalized decoupling , 2008 .

[320]  A. Winter,et al.  Compression of quantum-measurement operations , 2000, quant-ph/0012128.

[321]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[322]  P. Shor Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.

[323]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[324]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[325]  D. Dieks Communication by EPR devices , 1982 .

[326]  E. Lieb,et al.  Remainder terms for some quantum entropy inequalities , 2014, 1402.3840.

[327]  Michal Horodecki,et al.  On Hastings' Counterexamples to the Minimum Output Entropy Additivity Conjecture , 2009, Open Syst. Inf. Dyn..

[328]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[329]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement , 2012 .

[330]  P. Hayden,et al.  Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication , 2003, quant-ph/0308143.

[331]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[332]  Guillaume Aubrun,et al.  Hastings’s Additivity Counterexample via Dvoretzky’s Theorem , 2010, 1003.4925.

[333]  Hoi-Kwong Lo Quantum coding theorem for mixed states , 1995 .

[334]  F. Dupuis The decoupling approach to quantum information theory , 2010, 1004.1641.

[335]  M. Wolf,et al.  Quantum capacities of channels with small environment , 2006, quant-ph/0607070.