Processed pseudogenes acquired somatically during cancer development

Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotranspositions, with frequent target-site duplications (67%), consensus TTTTAA sites at insertion points, inverted rearrangements (21%), 5′ truncation (74%) and polyA tails (88%). Transcriptional consequences include expression of pseudogenes from UTRs or introns of target genes. In addition, a somatic pseudogene that integrated into the promoter and first exon of the tumour suppressor gene, MGA, abrogated expression from that allele. Thus, formation of processed pseudogenes represents a new class of mutation occurring during cancer development, with potentially diverse functional consequences depending on genomic context.

Andrew Menzies | Adam P. Butler | Jon W. Teague | Peter J. Campbell | Michael R. Stratton | P. Andrew Futreal | Keiran Raine | Carlos Caldas | Adrienne M. Flanagan | Inigo Martincorena | Sam M. Janes | Jorge S. Reis-Filho | Peter T. Simpson | Anne Vincent-Salomon | Alex Boussioutas | Richard G. Grundy | Serena Nik-Zainal | Elena Provenzano | Christine Desmedt | Christos Sotiriou | David Malkin | Sunil R. Lakhani | Mel Greaves | Elli Papaemmanuil | Yilong Li | Andrea L. Richardson | Graham R. Bignell | Sancha Martin | Manasa Ramakrishna | Paul N. Span | Ultan McDermott | Suet-Feung Chin | Samuel Aparicio | Sarah O’Meara | Denis Larsimont | Jane E. Brock | Aquila Fatima | Anna Ehinger | Sarah Pinder | Alastair M. Thompson | Laura van ’t Veer | Roberto Salgado | Adam Shlien | Jack A. Taylor | Laurent Arnould | A. Børresen-Dale | M. Stratton | M. J. van de Vijver | P. Futreal | P. Campbell | S. O'meara | T. Santarius | J. Teague | A. Menzies | G. Bignell | D. Bowtell | C. Sotiriou | C. Desmedt | J. Foekens | D. Larsimont | A. Sieuwerts | C. Iacobuzio-Donahue | P. Tarpey | S. Nik-Zainal | Sancha Martin | L. Yates | E. Papaemmanuil | A. Butler | L. Mudie | K. Raine | A. Langerød | M. Lee | Aquila Fatima | S. Chin | S. Lakhani | C. Caldas | J. Reis-Filho | S. Aparicio | A. Richardson | E. Provenzano | N. Bolli | I. Martincorena | M. Greaves | H. Davies | J. Marshall | J. Tubío | S. Behjati | Manasa Ramakrishna | P. Span | A. Vincent-Salomon | U. McDermott | J. Jónasson | R. Salgado | A. Ehinger | G. G. Van den Eynden | J. Brock | N. Hayes | A. Shlien | J. Taylor | S. Cooke | P. Simpson | G. Hooijer | Yilong Li | C. Purdie | I. Treilleux | B. Tan | A. Flanagan | D. Malkin | T. Sauer | J. Jacquemier | D. Grabau | R. Grundy | Ø. Garred | A. Boussioutas | S. Janes | D. Giri | L. Arnould | V. Teixeira | H. Hilmarsdóttir | A. Stenhouse | N. Munshi | Dorthe Grabau | Anne-Lise Børresen-Dale | Dilip D. Giri | Gilles Thomas | David Bowtell | Thomas Santarius | Torill Sauer | Christine Iacobuzio-Donahue | Ming Ta Michael Lee | Nikhil Munshi | C. Pipinikas | A. Thompson | Susanna L. Cooke | Jon G. Jonasson | John Marshall | Christodoulos P. Pipinikas | Jose M.C. Tubio | Laura Mudie | Lucy Yates | Helen Davies | Niccolo Bolli | Patrick S. Tarpey | Sam Behjati | Vitor H. Teixeira | Maryam S. Dodoran | Neil D. Hayes | Elena Marc Andrea L. Colin Sarah Gaetan Anne Denis Dorth Provenzano van de Vijver Richardson Purdie | Marc van de Vijver | Colin Purdie | Gaetan Mac Grogan | Øystein Garred | Gert G. Van den Eynden | C.H.M van Deurzen | Jocelyne Jacquemier | Isabelle Treilleux | Alasdair Stenhouse | John Foekens | John Martens | Anieta Sieuwerts | Arjen Brinkman | Henk Stunnenberg | Fred Sweep | Annegein Broeks | Anita Langerod | Jórunn Erla Eyfjörd | Holmfridur Hilmarsdottir | Bernice Huimin Wong | Benita Kiat Tee Tan | Gerrit K.J. Hooijer | C. V. van Deurzen | A. Broeks | Arjen Brinkman | Sarah Pinder | F. Sweep | B. H. Wong | G. Mac Grogan | L. J. van ’t Veer | J. Martens | Henk G. Stunnenberg | Maryam S. Dodoran | Gilles Thomas | Jórunn Erla Eyfjörd | Alastair M. Thompson | B. Tan

[1]  N. Palackal,et al.  Activation of Polycyclic Aromatic Hydrocarbontrans-Dihydrodiol Proximate Carcinogens by Human Aldo-keto Reductase (AKR1C) Enzymes and Their Functional Overexpression in Human Lung Carcinoma (A549) Cells* , 2002, The Journal of Biological Chemistry.

[2]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[3]  P. Pandolfi,et al.  A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010, Nature.

[4]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[5]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[6]  J. Löwer,et al.  Analysis of 5' junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5'-end attachment requiring microhomology-mediated end-joining. , 2005, Genome research.

[7]  Medical Faculty,et al.  High-Resolution Genomic Profiling of Chronic Lymphocytic Leukemia Reveals New Recurrent Genomic Alterations , 2014 .

[8]  A. Hartmann,et al.  (www.interscience.wiley.com) DOI: 10.1002/path.2039 , 2006 .

[9]  I. Blair,et al.  Evidence for the aldo-keto reductase pathway of polycyclic aromatic trans-dihydrodiol activation in human lung A549 cells , 2008, Proceedings of the National Academy of Sciences.

[10]  K. Kinzler,et al.  Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. , 1992, Cancer research.

[11]  J. Mattick,et al.  Somatic retrotransposition alters the genetic landscape of the human brain , 2011, Nature.

[12]  P. Campbell,et al.  Inactivating CUX1 mutations promote tumorigenesis , 2013, Nature Genetics.

[13]  N. Jenkins,et al.  Mga, a dual‐specificity transcription factor that interacts with Max and contains a T‐domain DNA‐binding motif , 1999, The EMBO journal.

[14]  Andrew Menzies,et al.  The patterns and dynamics of genomic instability in metastatic pancreatic cancer , 2010, Nature.

[15]  Oliver H. Tam,et al.  Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes , 2008, Nature.

[16]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[17]  Gene W. Yeo,et al.  L1 retrotransposition in human neural progenitor cells , 2009, Nature.

[18]  M. Stratton,et al.  The cancer genome , 2009, Nature.

[19]  D. Largaespada,et al.  Extensive somatic L1 retrotransposition in colorectal tumors , 2012, Genome research.

[20]  C. Walsh,et al.  Single-Neuron Sequencing Analysis of L1 Retrotransposition and Somatic Mutation in the Human Brain , 2012, Cell.

[21]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[22]  Piero Carninci,et al.  Edinburgh Research Explorer Endogenous Retrotransposition Activates Oncogenic Pathways in Hepatocellular Carcinoma Endogenous Retrotransposition Activates Oncogenic Pathways in Hepatocellular Carcinoma , 2022 .

[23]  E. Ostertag,et al.  Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. , 2001, Genome research.

[24]  Meena Kishore Sakharkar,et al.  Distributions of exons and introns in the human genome , 2004, Silico Biol..

[25]  Reuven Agami,et al.  3′UTR-Mediated Gene Silencing of the Mixed Lineage Leukemia (MLL) Gene , 2011, PloS one.

[26]  A. Børresen-Dale,et al.  The landscape of cancer genes and mutational processes in breast cancer , 2012, Nature.

[27]  Jef D Boeke,et al.  Human L1 element target‐primed reverse transcription in vitro , 2002, The EMBO journal.

[28]  L. Duret,et al.  Nature and structure of human genes that generate retropseudogenes. , 2000, Genome research.

[29]  D. Haussler,et al.  Retrocopy contributions to the evolution of the human genome , 2008, BMC Genomics.

[30]  Lovelace J. Luquette,et al.  Landscape of Somatic Retrotransposition in Human Cancers , 2012, Science.

[31]  M. Stratton,et al.  Statistical Analysis of Pathogenicity of Somatic Mutations in Cancer , 2006, Genetics.

[32]  Jae K. Lee,et al.  A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery , 2007, Proceedings of the National Academy of Sciences.

[33]  Fred H. Gage,et al.  L1 retrotransposition in neurons is modulated by MeCP2 , 2010, Nature.

[34]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[35]  M. Stratton,et al.  RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia , 2014, Nature Genetics.

[36]  J. V. Moran,et al.  DNA repair mediated by endonuclease-independent LINE-1 retrotransposition , 2002, Nature Genetics.

[37]  M. Stratton,et al.  Single-cell paired-end genome sequencing reveals structural variation per cell cycle , 2013, Nucleic acids research.

[38]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[39]  M. Stratton,et al.  Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. , 2011, The New England journal of medicine.

[40]  Andrew F. Neuwald,et al.  Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons , 2010, Cell.

[41]  Steven J. M. Jones,et al.  Comprehensive genomic characterization of squamous cell lung cancers , 2012, Nature.

[42]  Jef D Boeke,et al.  Molecular archeology of L1 insertions in the human genome , 2002, Genome Biology.