Room‐Temperature Micropillar Growth of Lithium–Titanate–Carbon Composite Structures by Self‐Biased Direct Current Magnetron Sputtering for Lithium Ion Microbatteries

Here, an unidentified type of micropillar growth is described at room temperature during conventional direct-current magnetron sputtering (DC-MS) deposition from a Li4Ti5O12+graphite sputter target ...

[1]  J. Thornton High Rate Thick Film Growth , 1977 .

[2]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[3]  S. Buddhudu,et al.  Analysis of structural and thermal properties of Li2TiO3 ceramic powders , 2011 .

[4]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[5]  F. Berkemeier,et al.  Lithium diffusion in sputter-deposited Li4Ti5O12 thin films , 2012 .

[6]  Wei Quan,et al.  Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries , 2017, Nature Communications.

[7]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[8]  Yaron Paz,et al.  Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications , 2011, Beilstein journal of nanotechnology.

[9]  R. K. Waits Planar magnetron sputtering , 1978 .

[10]  E. Pohjalainen,et al.  Comparative study of carbon free and carbon containing Li4Ti5O12 electrodes , 2015 .

[11]  Bo Liu,et al.  Lithium and lithium ion batteries for applications in microelectronic devices: A review , 2015 .

[12]  R. Basu,et al.  Synthesis of nanocrystalline Li4Ti5O12 by a novel aqueous combustion technique , 2009 .

[13]  F. Lévy,et al.  Energy distribution of ions bombarding TiO2 thin films during sputter deposition , 2001 .

[14]  J. Bates,et al.  Raman and Infrared Spectral Studies of Anhydrous Li2CO3 and Na2CO3 , 1971 .

[15]  L. Kavan,et al.  Electrochemical properties of spinel Li4Ti5O12 nanoparticles prepared via a low-temperature solid route , 2016, Journal of Solid State Electrochemistry.

[16]  R. Seisyan Nanolithography in microelectronics: A review , 2011 .

[17]  T. Laurila,et al.  Effect of Power Density on the Electrochemical Properties of Undoped Amorphous Carbon (a‐C) Thin Films , 2019, Electroanalysis.

[18]  G. Watson,et al.  GGA+U description of lithium intercalation into anatase TiO2 , 2010 .

[19]  F. Hsu,et al.  Preparation and Characterization of Thin Film Li4Ti5O12 Electrodes by Magnetron Sputtering , 2005 .

[20]  J. Alami,et al.  Measurement of the magnetic field change in a pulsed high current magnetron discharge , 2004 .

[21]  D. Wexler,et al.  Amorphous Carbon Coated High Grain Boundary Density Dual Phase Li4Ti5O12‐TiO2: A Nanocomposite Anode Material for Li‐Ion Batteries , 2011 .

[22]  J. Pereira‐Ramos,et al.  Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy , 2010 .

[23]  Joseph Wang Nanomaterial-based electrochemical biosensors. , 2005, The Analyst.

[24]  Y. Huttel,et al.  Generation of nanoparticles with adjustable size and controlled stoichiometry: recent advances. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[25]  Mingming Chen,et al.  Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance , 2012 .

[26]  A. Anders A structure zone diagram including plasma based deposition and ion etching - eScholarship , 2010 .

[27]  J. D. Robertson,et al.  Sputtering of lithium compounds for preparation of electrolyte thin films , 1992 .

[28]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[29]  Y. Wang,et al.  Solid-state synthesis of submicron-sized Li4Ti5O12/Li2TiO3 composites with rich grain boundaries for lithium ion batteries , 2014 .

[30]  Congxiao Wang,et al.  Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries , 2011 .

[31]  Qiuying Xia,et al.  Black mesoporous Li4Ti5O12−δ nanowall arrays with improved rate performance as advanced 3D anodes for microbatteries , 2016 .

[32]  T. Arizumi,et al.  Ultrafine powders of TiN and AlN produced by a reactive gas evaporation technique with electron beam heating , 1982 .

[33]  M. Chakraborty,et al.  Substrate bias voltage and deposition temperature dependence on properties of rf-magnetron sputtered titanium films on silicon (100) , 2014, Bulletin of Materials Science.

[34]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[35]  R. Boyd,et al.  The influence of pressure and gas flow on size and morphology of titanium oxide nanoparticles synthesized by hollow cathode sputtering , 2016 .

[36]  T. Sajavaara,et al.  Time-of-flight - Energy spectrometer for elemental depth profiling - Jyväskylä design , 2014 .

[37]  Mikko Laitinen,et al.  Potku - New analysis software for heavy ion elastic recoil detection analysis , 2014 .

[38]  D. Kellerman,et al.  Structure peculiarities of carbon-coated lithium titanate: Raman spectroscopy and electron microscopic study , 2012 .

[39]  Guohong Ma,et al.  Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser , 2007 .

[40]  Alina Matei,et al.  FTIR Spectroscopy for Carbon Family Study , 2016, Critical reviews in analytical chemistry.

[41]  A. Jankowski,et al.  Sputter deposition of a spongelike morphology in metal coatings , 2003 .

[42]  A. Riahi,et al.  Electrochemical cycling behaviour of lithium carbonate (Li2CO3) pre-treated graphite anodes – SEI formation and graphite damage mechanisms , 2014 .

[43]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[44]  T. Laurila,et al.  Application-Specific Catalyst Layers: Pt-Containing Carbon Nanofibers for Hydrogen Peroxide Detection , 2017, ACS omega.

[45]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[46]  John Robertson,et al.  Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon , 2001 .

[47]  Aaron Peled,et al.  Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review , 1998 .

[48]  H. Kleykamp,et al.  Phase equilibria in the Li–Ti–O system and physical properties of Li2TiO3 , 2002 .

[49]  X. Sun,et al.  Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance , 2016 .

[50]  P. S. Mcleod,et al.  High‐rate sputtering of aluminum for metallization of integrated circuits , 1977 .

[51]  Torsten Brezesinski,et al.  Ordered Large-Pore Mesoporous Li4Ti5O12 Spinel Thin Film Electrodes with Nanocrystalline Framework for High Rate Rechargeable Lithium Batteries: Relationships among Charge Storage, Electrical Conductivity, and Nanoscale Structure , 2011 .

[52]  B. Cuenya Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects , 2010 .

[53]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[54]  Peng Jiang,et al.  Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures , 2008, Nanotechnology.

[55]  Dawei Liu,et al.  Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation , 2010 .

[56]  P. Kelly,et al.  Magnetron sputtering: a review of recent developments and applications , 2000 .

[57]  P. Pasierb,et al.  Structural properties of Li2CO3–BaCO3 system derived from IR and Raman spectroscopy , 2001 .

[58]  S. Uhlenbruck,et al.  Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering. , 2015, ACS applied materials & interfaces.

[59]  G. Mannino,et al.  Multi-Scale-Porosity TiO2 scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics , 2016, Scientific Reports.

[60]  N. A. Kyeremateng Self‐Organised TiO2 Nanotubes for 2D or 3D Li‐Ion Microbatteries , 2014 .