A kissing complex together with a stable dimer is involved in the HIV-1Lai RNA dimerization process in vitro.

Retroviruses contain a dimeric RNA consisting of two identical molecules of genomic RNA. The interaction between the two monomers is thought to occur near their 5'ends. We previously identified a region upstream from the splice donor site, comprising an autocomplementary sequence, responsible for the formation of dimeric HIV-1Lai RNA [Muriaux, D., Girard, P.-M., Bonnet-Mathonire, B., & Paoletti, J.(1995) J. Biol. Chem. 270,8209-8216]. This region appeared to be confined within a putative stem-loop structure. Here we report an in vitro model under conditions of low inioc strength. Two dimers of RNA 77-402 were identified as a function of temperature, and a significant difference was found in their thermostability. Dimer D55, formed at 55 degrees Celsius, is more stable than dimer D37, formed at 37 degrees C. RNase probing experiments confirm the involvement of a stem-loop structure in the dimerization process. In the monomer, the free G257-CGCGC262 sequence forms a loop in the 240-280 region of RNA 77-402, whereas this sequence is engaged in base pairing when D55 and D37 dimers are formed. Our results show that the loop-loop interaction of the autocomplementary G257CGCGC262 sequence, though hydrogen bonding, is responsible for the formation of dimer D37 and strongly suggest that D37 is a "kissing" complex. In contrast, in dimer D55, all the nucleotides of the two hairpin stems, 243-254/264-277, are involved in a complete interstrand interaction.