Canard theory and excitability

An important feature of many physiological systems is that they evolve on multiple scales. From a mathematical point of view, these systems are modeled as singular perturbation problems. It is the interplay of the dynamics on different temporal and spatial scales that creates complicated patterns and rhythms. Many important physiological functions are linked to time-dependent changes in the forcing which leads to nonautonomous behaviour of the cells under consideration. Transient dynamics observed in models of excitability are a prime example.Recent developments in canard theory have provided a new direction for understanding these transient dynamics. The key observation is that canards are still well defined in nonautonomous multiple scales dynamical systems, while equilibria of an autonomous system do, in general, not persist in the corresponding driven, nonautonomous system. Thus canards have the potential to significantly shape the nature of solutions in nonautonomous multiple scales systems. In the context of neuronal excitability, we identify canards of folded saddle type as firing threshold manifolds. It is remarkable that dynamic information such as the temporal evolution of an external drive is encoded in the location of an invariant manifold—the canard.

[1]  James P. Keener,et al.  Mathematical physiology , 1998 .

[2]  Jianzhong Su,et al.  Analysis of a Canard Mechanism by Which Excitatory Synaptic Coupling Can Synchronize Neurons at Low Firing Frequencies , 2004, SIAM J. Appl. Math..

[3]  Richard Bertram,et al.  Mixed mode oscillations as a mechanism for pseudo-plateau bursting , 2010, Journal of Computational Neuroscience.

[4]  Christopher G. Wilson,et al.  Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network. , 2002, Biophysical journal.

[5]  M. Hasselmo,et al.  Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. , 2000, Journal of neurophysiology.

[6]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[7]  R. FitzHugh Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations , 1960, The Journal of general physiology.

[8]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[9]  Michelle M. McCarthy,et al.  Excitable Neurons, Firing Threshold Manifolds and Canards , 2013, Journal of mathematical neuroscience.

[10]  M. Wechselberger À propos de canards (Apropos canards) , 2012 .

[11]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[12]  Terrence J. Sejnowski,et al.  Biophysical Basis for Three Distinct Dynamical Mechanisms of Action Potential Initiation , 2008, PLoS Comput. Biol..

[13]  Helwig Löffelmann,et al.  GEOMETRY OF MIXED-MODE OSCILLATIONS IN THE 3-D AUTOCATALATOR , 1998 .

[14]  R. FitzHugh Mathematical models of threshold phenomena in the nerve membrane , 1955 .

[15]  Freddy Dumortier,et al.  Canard Cycles and Center Manifolds , 1996 .

[16]  H. Osinga,et al.  Understanding anomalous delays in a model of intracellular calcium dynamics. , 2010, Chaos.

[17]  P. Cox,et al.  Excitability in ramped systems: the compost-bomb instability , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[19]  Horacio G. Rotstein,et al.  Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..

[20]  Jonathan E. Rubin,et al.  Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model , 2007, Biological Cybernetics.

[21]  Bard Ermentrout,et al.  Canards, Clusters, and Synchronization in a Weakly Coupled Interneuron Model , 2009, SIAM J. Appl. Dyn. Syst..

[22]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[23]  J. Rothman,et al.  The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. , 2003, Journal of neurophysiology.

[24]  John Rinzel,et al.  TYPE III EXCITABILITY, SLOPE SENSITIVITY AND COINCIDENCE DETECTION. , 2012, Discrete and continuous dynamical systems. Series A.

[25]  R. FitzHugh,et al.  Anodal excitation in the Hodgkin-Huxley nerve model. , 1976, Biophysical journal.

[26]  John Guckenheimer,et al.  Chaotic attractors of relaxation oscillators , 2006 .

[27]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[28]  N. Kopell,et al.  Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. , 2008, Chaos.

[29]  Vivien Kirk,et al.  Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales , 2011, Journal of mathematical neuroscience.

[30]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[31]  F. Dumortier,et al.  Birth of canard cycles , 2009 .

[32]  Idan Segev,et al.  Subthreshold oscillations and resonant frequency in guinea‐pig cortical neurons: physiology and modelling. , 1995, The Journal of physiology.

[33]  M. Devor,et al.  Burst Discharge in Primary Sensory Neurons: Triggered by Subthreshold Oscillations, Maintained by Depolarizing Afterpotentials , 2002, The Journal of Neuroscience.

[34]  Peter Szmolyan,et al.  Relaxation oscillations in R3 , 2004 .

[35]  A. Hodgkin The local electric changes associated with repetitive action in a non‐medullated axon , 1948, The Journal of physiology.

[36]  É. Benoît Chasse au canard , 1980 .

[37]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[38]  John Guckenheimer,et al.  Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..

[39]  Vivien Kirk,et al.  Multiple Timescales, Mixed Mode Oscillations and Canards in Models of Intracellular Calcium Dynamics , 2011, J. Nonlinear Sci..

[40]  M. Krupa,et al.  Local analysis near a folded saddle-node singularity , 2010 .

[41]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[42]  Horacio G. Rotstein,et al.  Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. , 2008, Chaos.

[43]  Martin Rasmussen,et al.  Attractivity and Bifurcation for Nonautonomous Dynamical Systems , 2007 .

[44]  Martin Krupa,et al.  Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .

[45]  G. Hek Geometric singular perturbation theory in biological practice , 2010 .

[46]  R. Llinás,et al.  In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns , 2007, Proceedings of the National Academy of Sciences.

[47]  J. Rinzel Excitation dynamics: insights from simplified membrane models. , 1985, Federation proceedings.

[48]  M Desroches,et al.  Inflection, canards and excitability threshold in neuronal models , 2012, Journal of Mathematical Biology.

[49]  Peter E. Kloeden,et al.  Nonautonomous Dynamical Systems , 2011 .

[50]  F. Takens Constrained equations; a study of implicit differential equations and their discontinuous solutions , 1976 .

[51]  P. Maesschalck,et al.  Slow–fast Bogdanov–Takens bifurcations , 2011 .

[52]  Michelle M. McCarthy,et al.  The Effect of Propofol Anesthesia on Rebound Spiking , 2012, SIAM J. Appl. Dyn. Syst..

[53]  Alla Borisyuk,et al.  UNDERSTANDING NEURONAL DYNAMICS BY GEOMETRICAL DISSECTION OF MINIMAL MODELS , 2005 .

[54]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[55]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[56]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[57]  Peter E. Kloeden,et al.  Nonautonomous Dynamical Systems in the Life Sciences , 2013 .

[58]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[59]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[60]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.