Analytical techniques for broadband multielectromechanical piezoelectric bimorph beams with multifrequency power harvesting

This paper presents the multifrequency responses of multielectromechanical piezoelectric bimorph beams using a novel analytical model based on the closed-form boundary value method reduced from the strong form of Hamiltonian's principle. The reduced constitutive multielectromechanical dynamic equations for the multiple bimorph beams connected in series, parallel, and mixed series-parallel connections can be further formulated using Laplace transformation to give new formulas for power harvesting multifrequency response functions. The parametric case studies based on the change in geometrical structures of the multiple bimorphs with and without tip masses are discussed to analyze the trend of multifrequency power harvesting optimization under resistive load. Nyquist responses based on varying geometrical structures and load resistances were used to analyze the multifrequency power amplitudes in the complex domain. Overall, the trend of system response using multiple tiers consisting of multiple bimorphs was found to significantly widen the multifrequency band followed by increasing the power amplitudes.

[1]  S. Priya,et al.  Piezoelectric Microgenerators-Current Status and Challenges , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[2]  Jingang Yi,et al.  A Vibration-Based PMN-PT Energy Harvester , 2009, IEEE Sensors Journal.

[3]  Jungho Ryu,et al.  Piezoelectric and Magnetoelectric Thick Films for Fabricating Power Sources in Wireless Sensor Nodes , 2009, Sensors.

[4]  J. G. Smits Equivalent circuit for end-loaded piezoelectric bimorph actuators , 1984 .

[5]  A. Ballato,et al.  Network representation for piezoelectric bimorphs , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  Huan Xue,et al.  Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  A. Cuadras,et al.  Multimodal piezoelectric wind energy harvesters , 2011 .

[8]  J. Dugundji,et al.  Modeling and experimental verification of proof mass effects on vibration energy harvester performance , 2010 .

[9]  F. Moll,et al.  Optimum Piezoelectric Bending Beam Structures for Energy Harvesting using Shoe Inserts , 2005 .

[10]  J. G. Smits,et al.  The constituent equations of piezoelectric bimorphs , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[11]  C. Van Hoof,et al.  Micropower energy harvesting , 2009, ESSDERC 2009.

[12]  Peter Woias,et al.  Parameter identification for resonant piezoelectric energy harvesters in the low- and high-coupling regimes , 2011 .

[13]  A. Ballato,et al.  Resonance and antiresonance of symmetric and asymmetric cantilevered piezoelectric flexors , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  Christopher A Howells,et al.  Piezoelectric energy harvesting , 2009 .

[15]  Mikail F. Lumentut,et al.  Analytical modeling of self-powered electromechanical piezoelectric bimorph beams with multidirectional excitation , 2011 .

[16]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[17]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[18]  Norman M. Wereley,et al.  Performance Evaluation of Multi-tier Energy Harvesters Using Macro-fiber Composite Patches , 2009 .

[19]  Jan G. Smits,et al.  and Antiresonance of Symmetric Asymmetric Cantilevered Piezoel.ectric Flexors , 1997 .

[20]  J. Park,et al.  Modeling and Characterization of Piezoelectric $d_{33}$ -Mode MEMS Energy Harvester , 2010, Journal of Microelectromechanical Systems.

[21]  Marco Ferrari,et al.  Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems , 2008 .

[22]  L. E. Cross,et al.  Electromechanical coupling and output efficiency of piezoelectric bending actuators , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  K. A. Cook-Chennault,et al.  Piezoelectric Energy Harvesting , 2008 .

[24]  S. Shahruz Design of mechanical band-pass filters for energy scavenging , 2006 .

[25]  Mikail F. Lumentut,et al.  Analytical and experimental comparisons of electromechanical vibration response of a piezoelectric bimorph beam for power harvesting , 2013 .

[26]  Paul Gonnard,et al.  Modelling of a cantilever non-symmetric piezoelectric bimorph , 2003 .

[27]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[28]  Chengkuo Lee,et al.  Piezoelectric MEMS Energy Harvester for Low-Frequency Vibrations With Wideband Operation Range and Steadily Increased Output Power , 2011, Journal of Microelectromechanical Systems.

[29]  D. J. Inman,et al.  Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[30]  J.G. Smits,et al.  The constituent equations of piezoelectric heterogeneous bimorphs , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[31]  이윤표,et al.  Modeling and Characterization of Piezoelectric d(33)-Mode MEMS Energy Harvester , 2010 .