Pressure-induced absorption in nonpolar gases containing tetrahedral molecules

The theory of pressure-induced absorption of far infrared radiation by gases is extended to include the contribution of the dipole moment induced in a molecule by the field gradient due to its neighbours. This dipole is nonzero when the molecule lacks a centre of inversion, as in a tetrahedron. In the collision of two tetrahedra, the dipole induced in molecule 2 by the electric field of the octopole moment Ω1 of the partner leads to transitions in which ΔJ(1) = 0, ± 1, ±2, ±3, and ΔJ(2) = 0. The dipole induced by the field gradient of Ω1 leads to ΔJ(1) = 0, ±1, ±2, ±3, and ΔJ(2) = 0, ±1, ±2, ±3, and therefore gives a required increase in absorption at higher frequencies. The field-gradient contribution vanishes in a collision involving a tetrahedral and a spherical molecule. General expressions are given for the field-gradient contributions to the integrated intensity and to the −2 spectral moment.