Ten years of GOME/ERS-2 total ozone data—The new GOME data processor (GDP) version 4: 1. Algorithm description

The Global Ozone Monitoring Instrument (GOME) was launched on European Space Agency's ERS-2 platform in April 1995. The GOME data processor (GDP) operational retrieval algorithm has generated total ozone columns since July 1995. In 2004 the GDP system was given a major upgrade to version 4.0, a new validation was performed, and the 10-year GOME level 1 data record was reprocessed. In two papers, we describe the GDP 4.0 retrieval algorithm and present an error budget and sensitivity analysis (paper 1) and validation of the GDP total ozone product and the overall accuracy of the entire GOME ozone record (paper 2). GDP 4.0 uses an optimized differential optical absorption spectroscopy (DOAS) algorithm, with air mass factor (AMF) conversions calculated using the radiative transfer code linearized discrete ordinate radiative transfer (LIDORT). AMF computation is based on the TOMS version 8 ozone profile climatology, classified by total column, and AMFs are adjusted iteratively to reflect the DOAS slant column result. GDP 4.0 has improved wavelength calibration and reference spectra and includes a new molecular Ring correction to deal with distortion of ozone absorption features due to inelastic rotational Raman scattering effects. Preprocessing for cloud parameter estimation in GDP 4.0 is done using two new cloud correction algorithms: OCRA and ROCINN. For clear and cloudy scenes the precision of the ozone column product is better than 2.4 and 3.3%, respectively, for solar zenith angles up to 80°. Comparisons with ground-based data are generally at the 1-1.5% level or better for all regions outside the poles.

[1]  R. J. Paur,et al.  The ultraviolet cross-sections of ozone. I. The measurements. II - Results and temperature dependence , 1985 .

[2]  Piet Stammes,et al.  Absorbing Aerosol Index: Sensitivity analysis, application to GOME and comparison with TOMS , 2005 .

[3]  Albrecht Bargen von,et al.  Calculation of Undersampling Correction Spectra for DOAS Spectral Fitting , 1999 .

[4]  F. X. Kneizys,et al.  Users Guide to LOWTRAN 7 , 1988 .

[5]  Akihiko Kuze,et al.  Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands , 1994 .

[6]  Henk Eskes,et al.  Retrieval and validation of ozone columns derived from measurements of SCIAMACHY on Envisat , 2005 .

[7]  John P. Burrows,et al.  TROPOSPHERIC NO2 FROM GOME MEASUREMENTS , 2002 .

[8]  J. Slusser,et al.  On Rayleigh Optical Depth Calculations , 1999 .

[9]  Michael Eisinger,et al.  Refinement of a Database of Spectral Surface Reflectivity in the Range 335-772 nm Derived from 5.5 Years of GOME Observations , 2003 .

[10]  Brian J. Kerridge,et al.  Direct measurement of tropospheric ozone distributions from space , 1998, Nature.

[11]  Y. J. Meijer,et al.  Ozone profile retrieval from recalibrated Global Ozone Monitoring Experiment data , 2002 .

[12]  J. Burrows,et al.  TROPOSPHERIC NO 2 FROM GOME MEASUREMENTS , 2002 .

[13]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[14]  Ulrich Platt,et al.  A fast H 2 O total column density product from GOME – Validation with in-situ aircraft measurements , 2003 .

[15]  Wolfgang Balzer,et al.  GOME level 1-to-2 data processor version 3.0: a major upgrade of the GOME/ERS-2 total ozone retrieval algorithm. , 2005, Applied optics.

[16]  Diego G. Loyola,et al.  Automatic cloud analysis from polar-orbiting satellites using neural network and data fusion techniques , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[17]  John P. Burrows,et al.  RING EFFECT: IMPACT OF ROTATIONAL RAMAN SCATTERING ON RADIATIVE TRANSFER IN EARTH’S ATMOSPHERE , 1998 .

[18]  Pawan K. Bhartia,et al.  A correction for total ozone mapping spectrometer profile shape errors at high latitude , 1997 .

[19]  H. Kelder,et al.  An ozone climatology based on ozonesonde and satellite measurements , 1998 .

[20]  Thomas Ruppert,et al.  A new PMD cloud-recognition algorithm for GOME , 1998 .

[21]  Thomas P. Kurosu,et al.  Satellite observations of formaldehyde over North America from GOME , 2000 .

[22]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[23]  F. Bednarz GOME : Global Ozone Monitoring Experiment : users manual , 1995 .

[24]  Xiong Liu,et al.  Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation , 2005 .

[25]  Otto P. Hasekamp,et al.  Ozone profile retrieval from backscattered ultraviolet radiances: The inverse problem solved by regularization , 2001 .

[26]  J. Lambert,et al.  Investigation of Pole-to-Pole Performances of Spaceborne Atmospheric Chemistry Sensors with the NDSC , 1999 .

[27]  Kelly Chance,et al.  Analysis of BrO measurements from the Global Ozone Monitoring Experiment , 1998 .

[28]  Ulrich Platt,et al.  Improved air mass factor concepts for scattered radiation differential optical absorption spectroscopy of atmospheric species , 2000 .

[29]  James F. Gleason,et al.  An improved retrieval of tropospheric nitrogen dioxide from GOME , 2002 .

[30]  Henk Eskes,et al.  Error analysis for tropospheric NO2 retrieval from space , 2004 .

[31]  Christos Zerefos,et al.  On the Retrieval of Volcanic Sulfur Dioxide Emissions from GOME Backscatter Measurements , 2005 .

[32]  J. Burrows,et al.  ATMOSPHERIC REMOTE-SENSING REFERENCE DATA FROM GOME — 2 . TEMPERATURE-DEPENDENT ABSORPTION CROSS SECTIONS OF O 3 IN THE 231 — 794 NM RANGE , 1998 .

[33]  K. Chance,et al.  Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. , 1997, Applied optics.

[34]  James F. Gleason,et al.  Combined characterisation of GOME and TOMS total ozone measurements from space using ground-based observations from the NDSC , 2000 .

[35]  Ernest Hilsenrath,et al.  Scientific requirements and optical design of the ozone monitoring instrument on EOS-CHEM , 1999, Optics & Photonics.

[36]  Robert Spurr,et al.  Simultaneous derivation of intensities and weighting functions in a general pseudo-spherical discrete ordinate radiative transfer treatment , 2002 .

[37]  Klaus Pfeilsticker,et al.  Analysis for BrO in zenith‐sky spectra: An intercomparison exercise for analysis improvement , 2002 .

[38]  J. Grainger,et al.  Anomalous Fraunhofer Line Profiles , 1962, Nature.

[39]  Werner Thomas,et al.  Detection of biomass burning combustion products in Southeast Asia from backscatter data taken by the GOME Spectrometer , 1998 .

[40]  W. Rossow,et al.  The International Satellite Cloud Climatology Project (ISCCP): The First Project of the World Climate Research Programme , 1983 .

[41]  John P. Burrows,et al.  Ozone profile retrieval from Global Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY)) , 2003 .

[42]  Thomas P. Kurosu,et al.  A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval , 2001 .

[43]  John P. Burrows,et al.  Pole-to-pole validation of GOME WFDOAS total ozone with groundbased data , 2004 .

[44]  M. V. Roozendael,et al.  Ozone and NO2 air‐mass factors for zenith‐sky spectrometers: Intercomparison of calculations with different radiative transfer models , 1995 .

[45]  Pieter Valks,et al.  Ten years of GOME/ERS2 total ozone data—The new GOME data processor (GDP) version 4: 2. Ground-based validation and comparisons with TOMS V7/V8 , 2007 .

[46]  Michael Buchwitz,et al.  Total ozone retrieval from GOME UV spectral data using the weighting function DOAS approach , 2004 .

[47]  D. E. Bowker,et al.  Spectral reflectances of natural targets for use in remote sensing studies , 1985 .

[48]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .

[49]  Peter Builtjes,et al.  Retrieval methods of effective cloud cover from the GOME instrument: an intercomparison , 2002 .

[50]  J. Hovenier,et al.  A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment , 2001 .

[51]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[52]  Vladimir V. Rozanov,et al.  Ozone profiles from GOME satellite data : Algorithm description and first validation , 1999 .

[53]  Jay R. Herman,et al.  Earth surface reflectivity climatology at 340–380 nm from TOMS data , 1997 .

[54]  Michael Eisinger,et al.  The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results , 1999 .