Split-Window Coefficients for Land Surface Temperature Retrieval From Low-Resolution Thermal Infrared Sensors

In this letter, we provide a complete set of split-window coefficients that can be used to retrieve land surface temperature (LST) from thermal infrared sensors onboard the most popular remote-sensing satellites: ERS-ATSR2, ENVISAT-AATSR, Terra/Aqua-MODIS, NOAA series-AVHRR, METOP-AVHRR3, GOES series-IMAGER, and MSG1/MSG2-SEVIRI. The coefficients have been obtained by minimization from an extensive simulated database constructed from MODTRAN radiative transfer code calculations, emissivity spectra extracted from spectral libraries, and spectral response functions of the thermal bands considered. This letter also analyzes the magnitude of the error on the LST retrieval and the contribution to the error of the different uncertainties. Results are summarized in a lookup table useful for scientists interested on land surface retrievals at global scale, thereby facilitating and homogenizing the task of retrieving this parameter from different common sensors.

[1]  George A. Maul,et al.  Estimation of sea surface temperature from space , 1971 .

[2]  Antonio J. Plaza,et al.  Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Juan C. Jiménez-Muñoz,et al.  Feasibility of Retrieving Land-Surface Temperature From ASTER TIR Bands Using Two-Channel Algorithms: A Case Study of Agricultural Areas , 2007, IEEE Geoscience and Remote Sensing Letters.

[4]  Alfred J Prata,et al.  Land surface temperatures derived from the advanced very high resolution radiometer and the along‐track scanning radiometer: 2. Experimental results and validation of AVHRR algorithms , 1994 .

[5]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[6]  C. Prabhakara,et al.  Estimation of sea surface temperature from remote sensing in the 11‐ to 13‐μm window region , 1974 .

[7]  Zhao-Liang Li,et al.  Impact of the atmospheric transmittance and total water vapor content in the algorithms for estimating satellite sea surface temperatures , 1993, IEEE Trans. Geosci. Remote. Sens..

[8]  P. M. Saunders,et al.  Aerial measurement of sea surface temperature in the infrared , 1967 .

[9]  Z. Li,et al.  Temperature-independent spectral indices in thermal infrared bands , 1990 .

[10]  K. Jon Ranson,et al.  The Boreal Ecosystem-Atmosphere Study (BOREAS) : an overview and early results from the 1994 field year , 1995 .

[11]  Juan C. Jiménez-Muñoz,et al.  Atmospheric water vapour content retrieval from visible and thermal data in the framework of the DAISEX campaigns , 2005 .

[12]  Yann Kerr,et al.  Land surface temperature retrieval techniques and applications : Case of the AVHRR , 2004 .

[13]  Larry M. McMillin,et al.  Estimation of sea surface temperatures from two infrared window measurements with different absorption , 1975 .

[14]  J. Sobrino,et al.  A generalized single‐channel method for retrieving land surface temperature from remote sensing data , 2003 .

[15]  José A. Sobrino,et al.  Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco , 2000 .

[16]  José A. Sobrino,et al.  Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data , 1996 .