Self-similarity in the combinatorics of orthogonal polynomials
暂无分享,去创建一个
[1] Dominique Foata,et al. A Combinatorial Proof of the Mehler Formula , 1978, J. Comb. Theory A.
[2] Dominique Foata,et al. Modèles Combinatoires pour les Polynômes de Meixner , 1983, Eur. J. Comb..
[3] A. Joyal. Une théorie combinatoire des séries formelles , 1981 .
[4] Pierre Leroux,et al. Jacobi polynomials: Combinatorics of the basic identities , 1985, Discret. Math..
[5] François Bergeron. Combinatorics of classic orthogonal polynomials: a unified approach , 1990 .
[6] Ivan Constantineau,et al. On the Construction of Permutations of a Given Type Kept Fixed by Conjugation , 1993, J. Comb. Theory, Ser. A.
[7] Yeong-Nan Yeh,et al. Some Combinatorics of the Hypergeometric Series , 1988, Eur. J. Comb..
[8] Ivan Constantineau,et al. On combinatorial structures kept fixed by the action of a given permutation , 1991 .
[9] Robert L. Davis. The number of structures of finite relations , 1953 .
[10] Gilbert Labelle,et al. Some new computational methods in the theory of species , 1986 .
[11] I. Constantineau,et al. Calcul combinatoire du nombre d'endofunctions et d'arborescences laissées fixes par une permutation , 1989 .
[12] D. Foata,et al. Polynômes de Jacobi, interprétation combinatoire et fonction génératrice , 1983 .
[13] Yeong-Nan Yeh,et al. The Combinatorics of Laguerre, Charlier, and Hermite Polynomials , 1989 .
[14] Yeong-Nan Yeh,et al. Combinatorial proofs of symmetry formulas for the generalized hypergeometric series , 1989 .