Multirate infinitesimal step methods for atmospheric flow simulation

The numerical solution of the Euler equations requires the treatment of processes in different temporal scales. Sound waves propagate fast compared to advective processes. Based on a spatial discretisation on staggered grids, a multirate time integration procedure is presented here generalising split-explicit Runge-Kutta methods. The advective terms are integrated by a Runge-Kutta method with a macro stepsize restricted by the CFL number. Sound wave terms are treated by small time steps respecting the CFL restriction dictated by the speed of sound.Split-explicit Runge-Kutta methods are generalised by the inclusion of fixed tendencies of previous stages. The stability barrier for the acoustics equation is relaxed by a factor of two.Asymptotic order conditions for the low Mach case are given. The relation to commutator-free exponential integrators is discussed. Stability is analysed for the linear acoustic equation. Numerical tests are executed for the linear acoustics and the nonlinear Euler equations.

[1]  N. Phillips,et al.  Scale Analysis of Deep and Shallow Convection in the Atmosphere , 1962 .

[2]  Louis J. Wicker,et al.  A Time-Splitting Scheme for the Elastic Equations Incorporating Second-Order Runge–Kutta Time Differencing , 1998 .

[3]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .

[4]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[5]  Ralf Wolke,et al.  Implicit-explicit Runge-Kutta methods for computing atmospheric reactive flows , 1998 .

[6]  William C. Skamarock,et al.  A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..

[7]  Jordan G. Powers,et al.  A Description of the Advanced Research WRF Version 2 , 2005 .

[8]  Elena Celledoni,et al.  Eulerian and semi-Lagrangian schemes based on commutator-free exponential integrators , 2005 .

[9]  Stig Skelboe Stability properties of backward euler multirate formulas , 1989 .

[10]  Rüdiger Weiner,et al.  Behandlung steifer Anfangswertprobleme gewöhnlicher Differentialgleichungen mit adaptiven Runge-Kutta-Methoden , 1982, Computing.

[11]  A. Gassmann An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models , 2005 .

[12]  Brynjulf Owren,et al.  Order conditions for commutator-free Lie group methods , 2006 .

[13]  Stig Skelboe,et al.  Stability properties of backward differentiation multirate formulas , 1989 .

[14]  C. W. Gear,et al.  Multirate linear multistep methods , 1984 .

[15]  Elena Celledoni,et al.  Commutator-free Lie group methods , 2003, Future Gener. Comput. Syst..

[16]  Stabilitätseigenschaften adeptiver Runge‐Kutta‐Verfahren , 2008 .

[17]  M. Hochbruck,et al.  Exponential Runge--Kutta methods for parabolic problems , 2005 .

[18]  Louis J. Wicker,et al.  Time-Splitting Methods for Elastic Models Using Forward Time Schemes , 2002 .

[19]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[20]  W. Skamarock,et al.  The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations , 1992 .

[21]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[22]  P. Rentrop,et al.  Multirate ROW methods and latency of electric circuits , 1993 .

[23]  Sebastian Reich,et al.  A regularization approach for a vertical‐slice model and semi‐Lagrangian Störmer–Verlet time stepping , 2007 .

[24]  D. Durran Improving the Anelastic Approximation , 1989 .

[25]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .