Mathematical Formulation of the Fragment Molecular Orbital Method

The fragment molecular orbital (FMO) method is a computational scheme applied to the conventional molecular orbital theories, which reduces their scaling from N 3… N 7 to a nearly linear scaling, where N is the system size. FMO provides an accurate treatment of large molecules such as proteins and molecular clusters, and it can be efficiently parallelized to achieve high scaling on massively parallel computers. The main purpose of this chapter is to focus on the derivation of the equations and to provide a concise mathematical description of FMO. A brief summary of the recent applications of FMO is also given.

[1]  J. Taylor,et al.  Calculation of the intensities of the vibrational components of the ammonia ultra-violet absorption bands , 1970 .

[2]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[3]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[4]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[5]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[6]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[7]  Donald G. Truhlar,et al.  Systematic study of basis set superposition errors in the calculated interaction energy of two HF molecules , 1985 .

[8]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[9]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[10]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[11]  Todd A. Keith,et al.  Calculation of magnetic response properties using a continuous set of gauge transformations , 1993 .

[12]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[13]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[14]  Y. Yamaguchi,et al.  A New Dimension to Quantum Chemistry: Analytic Derivative Methods in AB Initio Molecular Electronic Structure Theory , 1994 .

[15]  Manabu Oumi,et al.  A doubles correction to electronic excited states from configuration interaction in the space of single substitutions , 1994 .

[16]  Mark S. Gordon,et al.  The Effective Fragment Model for Solvation: Internal Rotation in Formamide , 1996 .

[17]  Mark S. Gordon,et al.  An effective fragment method for modeling solvent effects in quantum mechanical calculations , 1996 .

[18]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[19]  M. Tachikawa,et al.  Full variational molecular orbital method: Application to the positron-molecule complexes , 1998 .

[20]  Guntram Rauhut,et al.  Integral transformation with low‐order scaling for large local second‐order Møller–Plesset calculations , 1998 .

[21]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[22]  Jan H. Jensen,et al.  QM/MM Boundaries Across Covalent Bonds: A Frozen Localized Molecular Orbital-Based Approach for the Effective Fragment Potential Method , 2000 .

[23]  Mark S. Gordon,et al.  The Distributed Data Interface in GAMESS , 2000 .

[24]  Karol Kowalski,et al.  The method of moments of coupled-cluster equations and the renormalized CCSD[T], CCSD(T), CCSD(TQ), and CCSDT(Q) approaches , 2000 .

[25]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[26]  Yuto Komeiji,et al.  Fragment molecular orbital method: analytical energy gradients , 2001 .

[27]  M. Shiga,et al.  A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics , 2001 .

[28]  M. Tachikawa Multi-component molecular orbital theory for electrons and nuclei including many-body effect with full configuration interaction treatment: isotope effects on hydrogen molecules , 2002 .

[29]  K. Kitaura,et al.  Definition of molecular orbitals in fragment molecular orbital method , 2002 .

[30]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[31]  Yuichi Inadomi,et al.  Fragment molecular orbital method: application to molecular dynamics simulation, ‘ab initio FMO-MD’ , 2003 .

[32]  Noriyuki Kurita,et al.  Fragment molecular orbital method with density functional theory and DIIS convergence acceleration , 2003 .

[33]  Noriyuki Kurita,et al.  Molecular orbital analysis based on fragment molecular orbital scheme , 2003 .

[34]  Yuji Mochizuki,et al.  Large scale MP2 calculations with fragment molecular orbital scheme , 2004 .

[35]  K. Hirao,et al.  A long-range-corrected time-dependent density functional theory. , 2004, The Journal of chemical physics.

[36]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[37]  Kazuo Kitaura,et al.  On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory , 2004 .

[38]  Mark S. Gordon,et al.  A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) , 2004, J. Comput. Chem..

[39]  Umpei Nagashima,et al.  A parallelized integral-direct second-order Møller–Plesset perturbation theory method with a fragment molecular orbital scheme , 2004 .

[40]  U. Nagashima,et al.  Development of an ab initio MO-MD program based on fragment MO method – an attempt to analyze the fluctuation of protein , 2004 .

[41]  Kazuo Kitaura,et al.  The importance of three-body terms in the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[42]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[43]  Yuji Mochizuki,et al.  Configuration interaction singles method with multilayer fragment molecular orbital scheme , 2005 .

[44]  Kaori Fukuzawa,et al.  A configuration analysis for fragment interaction , 2005 .

[45]  Kazuo Kitaura,et al.  Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method. , 2005, The Journal of chemical physics.

[46]  K. Kitaura,et al.  Multilayer formulation of the fragment molecular orbital method (FMO). , 2005, The journal of physical chemistry. A.

[47]  Piotr Piecuch,et al.  Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian. , 2005, The Journal of chemical physics.

[48]  Kazuo Kitaura,et al.  Coupled-cluster theory based upon the fragment molecular-orbital method. , 2005, The Journal of chemical physics.

[49]  Hiroaki Tokiwa,et al.  Theoretical study of intramolecular interaction energies during dynamics simulations of oligopeptides by the fragment molecular orbital-Hamiltonian algorithm method. , 2005, The Journal of chemical physics.

[50]  Kazuya Ishimura,et al.  A new parallel algorithm of MP2 energy calculations , 2006, J. Comput. Chem..

[51]  U. Nagashima,et al.  A fragment molecular-orbital-multicomponent molecular-orbital method for analyzing HD isotope effects in large molecules. , 2006, The Journal of chemical physics.

[52]  Kaori Fukuzawa,et al.  Developments and applications of ABINIT-MP software based on the fragment molecular orbital method , 2006 .

[53]  Takeshi Ishikawa,et al.  Fragment molecular orbital calculations on large scale systems containing heavy metal atom , 2006 .

[54]  T. Nakano,et al.  Dynamic polarizability calculation with fragment molecular orbital scheme , 2006 .

[55]  Junwei Zhang,et al.  VISCANA: Visualized Cluster Analysis of Protein-Ligand Interaction Based on the ab Initio Fragment Molecular Orbital Method for Virtual Ligand Screening , 2006, J. Chem. Inf. Model..

[56]  D. Yamaki,et al.  The extension of the fragment molecular orbital method with the many-particle Green's function. , 2006, The Journal of chemical physics.

[57]  Kazuo Kitaura,et al.  The three-body fragment molecular orbital method for accurate calculations of large systems , 2006 .

[58]  Michael W. Schmidt,et al.  Scalable implementation of analytic gradients for second-order Z-averaged perturbation theory using the distributed data interface. , 2006, The Journal of chemical physics.

[59]  Kazuo Kitaura,et al.  CHAPTER 1 – Theoretical development of the fragment molecular orbital (FMO) method , 2006 .

[60]  Hui Li,et al.  The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO) , 2006, J. Comput. Chem..

[61]  Mark S. Gordon,et al.  DEVELOPMENTS IN PARALLEL ELECTRONIC STRUCTURE THEORY , 2007 .

[62]  T. Nakano,et al.  Fragment interaction analysis based on local MP2 , 2007 .

[63]  Mark S. Gordon,et al.  A Novel Approach to Parallel Coupled Cluster Calculations: Combining Distributed and Shared Memory Techniques for Modern Cluster Based Systems , 2007 .

[64]  Kazuo Kitaura,et al.  Time-dependent density functional theory based upon the fragment molecular orbital method. , 2007, The Journal of chemical physics.

[65]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[66]  Piotr Piecuch,et al.  Extension of the renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed hamiltonian to open-shell systems: a benchmark study. , 2007, The journal of physical chemistry. A.

[67]  Kazuya Ishimura,et al.  Accuracy of the three‐body fragment molecular orbital method applied to Møller–Plesset perturbation theory , 2007, J. Comput. Chem..

[68]  K. Kitaura,et al.  Time-dependent density functional theory with the multilayer fragment molecular orbital method , 2007 .

[69]  Kazuo Kitaura,et al.  Pair interaction energy decomposition analysis , 2007, J. Comput. Chem..

[70]  Shinichiro Nakamura,et al.  Ab initio NMR chemical shift calculations on proteins using fragment molecular orbitals with electrostatic environment , 2007 .

[71]  Y. Mochizuki,et al.  Modification for spin-adapted version of configuration interaction singles with perturbative doubles , 2007 .

[72]  T. Nakano,et al.  Parallelized integral-direct CIS(D) calculations with multilayer fragment molecular orbital scheme , 2007 .

[73]  Yuichi Inadomi,et al.  DNA and estrogen receptor interaction revealed by fragment molecular orbital calculations. , 2007, The journal of physical chemistry. B.

[74]  Takeshi Ishikawa,et al.  A fully quantum mechanical simulation study on the lowest n-π* state of hydrated formaldehyde , 2007 .

[75]  H. Sekino,et al.  Evaluation of NMR Chemical Shift by Fragment Molecular Orbital Method , 2007 .

[76]  Kaori Fukuzawa,et al.  Application of the fragment molecular orbital method for determination of atomic charges on polypeptides , 2007 .

[77]  Masami Uebayasi,et al.  The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. , 2007, The journal of physical chemistry. A.

[78]  Ryo Maezono,et al.  Fragmentation Method Combined with Quantum Monte Carlo Calculations(Atomic and molecular physics) , 2007 .

[79]  Kaori Fukuzawa,et al.  Large scale FMO-MP2 calculations on a massively parallel-vector computer , 2008 .

[80]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[81]  Masahiko Suenaga,et al.  Development of GUI for GAMESS / FMO Calculation , 2008 .

[82]  Kazuo Kitaura,et al.  Polarizable continuum model with the fragment molecular orbital‐based time‐dependent density functional theory , 2008, J. Comput. Chem..

[83]  Wei Li,et al.  Geometry optimizations and vibrational spectra of large molecules from a generalized energy-based fragmentation approach. , 2008, The journal of physical chemistry. A.

[84]  Marat Valiev,et al.  Fast electron correlation methods for molecular clusters without basis set superposition errors. , 2008, The Journal of chemical physics.

[85]  Anuja P. Rahalkar,et al.  Enabling ab initio Hessian and frequency calculations of large molecules. , 2008, The Journal of chemical physics.

[86]  S. Hammes-Schiffer,et al.  Development of electron-proton density functionals for multicomponent density functional theory. , 2008, Physical review letters.

[87]  D. Truhlar,et al.  Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. , 2008, Journal of chemical theory and computation.

[88]  Yuichi Inadomi,et al.  FMO-MO Method as an Initial Guess Generation for SCF Calculation: Case of (-)-Epicatechin Gallate , 2008 .

[89]  Wolfgang Wenzel,et al.  Receptor‐specific scoring functions derived from quantum chemical models improve affinity estimates for in‐silico drug discovery , 2007, Proteins.

[90]  Tohru Suzuki,et al.  Ab initio base fragment molecular orbital studies of influenza viral hemagglutinin HA1 full-domains in complex with sialoside receptors , 2008, Journal of molecular and genetic medicine : an international journal of biomedical research.

[91]  Takeshi Ishikawa,et al.  How does an S(N)2 reaction take place in solution? Full ab initio MD simulations for the hydrolysis of the methyl diazonium ion. , 2008, Journal of the American Chemical Society.

[92]  Kazuo Kitaura,et al.  Theoretical analysis of the intermolecular interaction effects on the excitation energy of organic pigments: solid state quinacridone. , 2008, The journal of physical chemistry. A.

[93]  T. Nakano,et al.  An application of fragment interaction analysis based on local MP2 , 2008 .

[94]  Jan H. Jensen,et al.  Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method. , 2008, The journal of physical chemistry. A.

[95]  Mark S. Gordon,et al.  Accurate methods for large molecular systems. , 2009, The journal of physical chemistry. B.

[96]  Donald G Truhlar,et al.  X-Pol Potential: An Electronic Structure-Based Force Field for Molecular Dynamics Simulation of a Solvated Protein in Water. , 2009, Journal of chemical theory and computation.

[97]  Adrienn Ruzsinszky,et al.  Workhorse semilocal density functional for condensed matter physics and quantum chemistry. , 2009, Physical review letters.

[98]  Kenneth M. Merz,et al.  Importance of dispersion and electron correlation in ab initio protein folding. , 2009, The journal of physical chemistry. B.

[99]  Kaori Fukuzawa,et al.  Possibility of mutation prediction of influenza hemagglutinin by combination of hemadsorption experiment and quantum chemical calculation for antibody binding. , 2009, The journal of physical chemistry. B.

[100]  Kazuo Kitaura,et al.  Derivatives of the approximated electrostatic potentials in the fragment molecular orbital method , 2009 .

[101]  Kazuo Kitaura,et al.  Structural and interaction analysis of helical heparin oligosaccharides with the fragment molecular orbital method , 2009 .

[102]  Kazuo Kitaura,et al.  The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems , 2009 .

[103]  K. Kistler,et al.  Solvatochromic shifts of uracil and cytosine using a combined multireference configuration interaction/molecular dynamics approach and the fragment molecular orbital method. , 2009, The journal of physical chemistry. A.

[104]  Pär Söderhjelm,et al.  How accurate can a force field become? A polarizable multipole model combined with fragment-wise quantum-mechanical calculations. , 2009, The journal of physical chemistry. A.

[105]  Hui Li,et al.  Continuous and smooth potential energy surface for conductorlike screening solvation model using fixed points with variable areas. , 2009, The Journal of chemical physics.

[106]  Takashi Nakamura,et al.  Roles of K151 and D180 in L‐2‐haloacid dehalogenase from Pseudomonas sp. YL: Analysis by molecular dynamics and ab initio fragment molecular orbital calculations , 2009, J. Comput. Chem..

[107]  Mika Ito,et al.  Ab initio quantum-chemical study on emission spectra of bioluminescent luciferases by fragment molecular orbital method , 2009 .

[108]  Ab initio fragment molecular orbital (FMO) analysis of the structure of the phosphoinositide-binding peptide from gelsolin , 2009 .

[109]  N. Kurita,et al.  Ab initio molecular orbital calculations on specific interactions between urokinase-type plasminogen activator and its receptor. , 2009, Journal of molecular graphics & modelling.

[110]  Umpei Nagashima,et al.  Review of multicomponent molecular orbital method for direct treatment of nuclear quantum effect , 2009 .

[111]  Yuto Komeiji,et al.  Fragment molecular orbital-based molecular dynamics (FMO-MD), a quantum simulation tool for large molecular systems , 2009 .

[112]  Toshio Fujita,et al.  Novel Quantitative Structure-Activity Studies of HIV-1 Protease Inhibitors of the Cyclic Urea Type Using Descriptors Derived from Molecular Dynamics and Molecular Orbital Calculations , 2009 .

[113]  Kaori Fukuzawa,et al.  Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. II. Towards an improvement of force fields used for classical molecular dynamics simulations , 2009 .

[114]  Hermann Stoll,et al.  A Simple One-Body Approach to the Calculation of the First Electronic Absorption Band of Water. , 2009, Journal of chemical theory and computation.

[115]  Shigenori Tanaka,et al.  Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method , 2009 .

[116]  M. Gordon,et al.  A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications. , 2009, The Journal of chemical physics.

[117]  Kaori Fukuzawa,et al.  Accuracy of fragmentation in ab initio calculations of hydrated sodium cation , 2009 .

[118]  The role of the exchange in the embedding electrostatic potential for the fragment molecular orbital method. , 2009, The Journal of chemical physics.

[119]  L. Kantorovich,et al.  Partitioning scheme for density functional calculations of extended systems. , 2009, The Journal of chemical physics.

[120]  Kiyoyuki Terakura,et al.  Molecular orbital calculation of biomolecules with fragment molecular orbitals , 2009 .

[121]  R. P. Bettens,et al.  Accurately reproducing ab initio electrostatic potentials with multipoles and fragmentation. , 2009, The journal of physical chemistry. A.

[122]  Donald G Truhlar,et al.  Electrostatically Embedded Many-Body Approximation for Systems of Water, Ammonia, and Sulfuric Acid and the Dependence of Its Performance on Embedding Charges. , 2009, Journal of chemical theory and computation.

[123]  Takeshi Ishikawa,et al.  Fragment Molecular Orbital method‐based Molecular Dynamics (FMO‐MD) as a simulator for chemical reactions in explicit solvation , 2009, J. Comput. Chem..

[124]  Jan H. Jensen,et al.  Analytic gradient for the adaptive frozen orbital bond detachment in the fragment molecular orbital method , 2009 .

[125]  Takeshi Ishikawa,et al.  Theoretical study of the prion protein based on the fragment molecular orbital method , 2009, J. Comput. Chem..

[126]  Yuriko Aoki,et al.  Absorption spectra of estradiol and tryptophan constructed by the statistical and elongation methods. , 2009, The journal of physical chemistry. A.

[127]  D. Suárez,et al.  Thermochemical Fragment Energy Method for Biomolecules: Application to a Collagen Model Peptide. , 2009, Journal of chemical theory and computation.

[128]  K. Kitaura,et al.  Excited state geometry optimizations by time-dependent density functional theory based on the fragment molecular orbital method , 2009 .

[129]  Takeshi Ishikawa,et al.  Fragment molecular orbital calculation using the RI-MP2 method , 2009 .

[130]  Takeshi Ishikawa,et al.  Fragment molecular orbital calculations on red fluorescent proteins (DsRed and mFruits). , 2009, The journal of physical chemistry. B.

[131]  Zhihai Liu,et al.  Evaluation of the performance of four molecular docking programs on a diverse set of protein‐ligand complexes , 2010, J. Comput. Chem..

[132]  Spencer R Pruitt,et al.  Open-Shell Formulation of the Fragment Molecular Orbital Method. , 2010, Journal of chemical theory and computation.

[133]  Hui Li,et al.  Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation , 2009, J. Comput. Chem..

[134]  Yuichi Inadomi,et al.  Fragment molecular orbital study of the electronic excitations in the photosynthetic reaction center of Blastochloris viridis , 2009, J. Comput. Chem..

[135]  Nuclear-Electronic Orbital Method within the Fragment Molecular Orbital Approach† , 2010 .

[136]  Yuto Komeiji,et al.  Three-body expansion and generalized dynamic fragmentation improve the fragment molecular orbital-based molecular dynamics (FMO-MD)☆ , 2010 .

[137]  J. Perdew,et al.  Erratum: Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry [Phys. Rev. Lett. 103 , 026403 (2009)] , 2011 .