Universality of the Break-up Profile for the KdV Equation in the Small Dispersion Limit Using the Riemann-Hilbert Approach

AbstractWe obtain an asymptotic expansion for the solution of the Cauchy problem for the Korteweg-de Vries (KdV) equation $$u_t+6uu_x+\epsilon^{2}u_{xxx}=0,\quad u(x,t=0,\epsilon)=u_0(x),$$for $${\epsilon}$$ small, near the point of gradient catastrophe (xc, tc) for the solution of the dispersionless equation ut + 6uux = 0. The sub-leading term in this expansion is described by the smooth solution of a fourth order ODE, which is a higher order analogue to the Painlevé I equation. This is in accordance with a conjecture of Dubrovin, suggesting that this is a universal phenomenon for any Hamiltonian perturbation of a hyperbolic equation. Using the Deift/Zhou steepest descent method applied on the Riemann-Hilbert problem for the KdV equation, we are able to prove the asymptotic expansion rigorously in a double scaling limit.

[1]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[2]  V. A. Marchenko,et al.  The Inverse Problem of Scattering Theory , 1963 .

[3]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[4]  Thierry Ramond,et al.  Semiclassical study of quantum scattering on the line , 1996 .

[5]  Weakly nonlinear solutions of equationP12 , 1995 .

[6]  Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov - Witten invariants , 2001, math/0108160.

[7]  C. Klein,et al.  Numerical study of a multiscale expansion of KdV and Camassa-Holm equation , 2007 .

[8]  Carlos Tomei,et al.  Direct and inverse scattering on the line , 1988 .

[9]  Boris Dubrovin,et al.  On Hamiltonian perturbations of hyperbolic systems of conservation laws , 2004 .

[10]  G. Parisi,et al.  A non-perturbative ambiguity free solution of a string model , 1990 .

[11]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[12]  Setsuro Fujiie,et al.  Matrice de scattering et résonances associées à une orbite hétérocline , 1998 .

[13]  G. Moore Geometry of the string equations , 1990 .

[14]  Tamara Grava,et al.  Mathematik in den Naturwissenschaften Leipzig Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations , 2005 .

[15]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[16]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[17]  R. Sachs Review: Richard Beals, Percy Deift and Carlos Tomei, Direct and inverse scattering on the line , 1990 .

[18]  A Darboux theorem for Hamiltonian operators in the formal calculus of variations , 2000, math/0002164.

[19]  T. Claeys,et al.  Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models , 2006, math-ph/0607043.

[20]  A. Menikoff The existence of unbounded solutions of the korteweg-de vries equation , 1972 .

[21]  Alberto Bressan One Dimensional Hyperbolic Systems of Conservation Laws , 2002 .

[22]  M. Vanlessen,et al.  The existence of a real pole-free solution of the fourth order analogue of the Painleve I equation , 2007 .

[23]  M. Bowick,et al.  Universal scaling of the tail of the density of eigenvalues in random matrix models , 1991 .

[24]  L. Degiovanni,et al.  On Deformation of Poisson Manifolds of Hydrodynamic Type , 2001, nlin/0103052.

[25]  Boris Dubrovin,et al.  On universality of critical behaviour in the focusing nonlinear Schr\"odinger equation, elliptic umbilic catastrophe and the {\it tritronqu\'ee} solution to the Painlev\'e-I equation , 2007, 0704.0501.

[26]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[27]  Boris Dubrovin On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II: Universality of Critical Behaviour , 2005 .

[28]  C. David Levermore,et al.  The Small Dispersion Limit of the Korteweg-deVries Equation. I , 1982 .

[29]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[30]  Stephanos Venakides,et al.  The korteweg-de vries equation with small dispersion: Higher order lax-levermore theory , 1990 .

[31]  Stephanos Venakides,et al.  The Small Dispersion Limit of the Korteweg-De Vries Equation , 1987 .

[32]  P. Deift,et al.  An extension of the steepest descent method for Riemann-Hilbert problems: the small dispersion limit of the Korteweg-de Vries (KdV) equation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[34]  On universality of critical behaviour in the focusing nonlinear Schr\"odinger equation, elliptic umbilic catastrophe and the {\it tritronqu\'ee} solution to the Painlev\'e-I equation , 2007 .

[35]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[36]  Stephanos Venakides,et al.  New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems , 1997 .

[37]  Deformations of bi-Hamiltonian structures of hydrodynamic type , 2001, nlin/0108015.