Directional monotonicity of fusion functions

In this paper we deal with fusion functions, i.e., mappings from [0, 1]n into [0, 1]. As a generalization of the standard monotonicity and recently introduced weak monotonicity, we introduce and study the directional monotonicity of fusion functions. For distinguished fusion functions the sets of all directions in which they are increasing are determined. Moreover, in the paper the directional monotonicity of piecewise linear fusion functions is completely characterized. These results cover, among others, weighted arithmetic means, OWA operators, the Choquet, Sugeno and Shilkret integrals.

[1]  Miguel Couceiro,et al.  Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices , 2008, Fuzzy Sets Syst..

[2]  Humberto Bustince,et al.  Ignorance functions. An application to the calculation of the threshold in prostate ultrasound images , 2010, Fuzzy Sets Syst..

[3]  Manabu Iwasa Directional monotonicity properties of the power functions of likelihood ratio tests for cone-restricted hypotheses of normal means , 1998 .

[4]  R. Mesiar,et al.  Aggregation Functions: Aggregation on ordinal scales , 2009 .

[5]  Radko Mesiar,et al.  Transformations of copulas , 2005, Kybernetika.

[6]  Vicenç Torra,et al.  Twofold integral and multi-step Choquet integral , 2004, Kybernetika.

[7]  Tim Wilkin,et al.  Weakly Monotonic Averaging Functions , 2015, Int. J. Intell. Syst..

[8]  Salvatore Greco,et al.  Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..

[9]  N. Shilkret Maxitive measure and integration , 1971 .

[10]  Humberto Bustince,et al.  Image thresholding using restricted equivalence functions and maximizing the measures of similarity , 2007, Fuzzy Sets Syst..

[11]  Humberto Bustince,et al.  Restricted equivalence functions , 2006, Fuzzy Sets Syst..

[12]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[13]  Jean-Luc Marichal,et al.  k-intolerant capacities and Choquet integrals , 2007, Eur. J. Oper. Res..

[14]  Humberto Bustince,et al.  Brain MRI thresholding using incomparability and overlap functions , 2011, 2011 11th International Conference on Intelligent Systems Design and Applications.

[15]  Michal Baczynski,et al.  Fuzzy Implications , 2008, Studies in Fuzziness and Soft Computing.

[16]  Eyke Hüllermeier,et al.  Grouping, Overlap, and Generalized Bientropic Functions for Fuzzy Modeling of Pairwise Comparisons , 2012, IEEE Transactions on Fuzzy Systems.

[17]  Michio Sugeno,et al.  A Hierarchical Decomposition of Choquet integral Model , 1995, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[18]  Humberto Bustince,et al.  Generalization of the weighted voting method using penalty functions constructed via faithful restricted dissimilarity functions , 2013, Eur. J. Oper. Res..

[19]  Witold Pedrycz,et al.  Statistically grounded logic operators in fuzzy sets , 2009, Eur. J. Oper. Res..

[20]  Tim Wilkin,et al.  Weakly Monotone Averaging Functions , 2014, IPMU.

[21]  Bonifacio Llamazares Simple and absolute special majorities generated by OWA operators , 2004, Eur. J. Oper. Res..

[22]  Humberto Bustince,et al.  Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets , 1996, Fuzzy Sets Syst..

[23]  M. Grabisch Fuzzy integral in multicriteria decision making , 1995 .

[24]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[25]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[26]  Mariano Eriz Aggregation Functions: A Guide for Practitioners , 2010 .

[27]  R. Mesiar,et al.  ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[28]  G. Choquet Theory of capacities , 1954 .