Free-standing Si/SiO2 superlattices: fabrication procedure and optical, structural, and light-emitting properties

The Si/SiO2 superlattices were prepared by a molecular beam deposition method, high temperature furnace annealing (1100 °C), and back-side Si wafer etching in tetramethyl ammonium solution. Transmission electron microscopy and Raman spectroscopy show that the layered structure is not preserved during high temperature treatment. The etching of the substrate increases photoluminescence of the Si/SiO2 material. Optical waveguiding was realized for the free-standing sample demonstrating its reasonable optical quality and providing the optical parameters.

[1]  Philippe M. Fauchet,et al.  Ordering and self-organization in nanocrystalline silicon , 2000, Nature.

[2]  H.-G. Unger,et al.  Planar Optical Waveguides , 1979 .

[3]  A. Patz,et al.  Role of Oxygen , 1981 .

[4]  Wavelength-selective optical waveguiding of photoluminescence in a thermally annealed Si/SiO2 superlattice , 2004 .

[5]  M. Räsänen,et al.  Tunable wavelength-selective waveguiding of photoluminescence in Si-rich silica optical wedges , 2004 .

[6]  P. Fauchet,et al.  Thermal crystallization of amorphous Si/SiO2 superlattices , 1999 .

[7]  Photoluminescence from SiO2/Si/SiO2 structures , 2003 .

[8]  M. Räsänen,et al.  Laser-controlled stress of Si nanocrystals in a free-standing Si∕SiO2 superlattice , 2006 .

[9]  M. Räsänen,et al.  Optical gain in Si/SiO2 lattice: Experimental evidence with nanosecond pulses , 2001 .

[10]  Visible light emission from MBD-grown superlattices , 1997 .

[11]  J. Jorné,et al.  Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen , 1999 .

[12]  M. Räsänen,et al.  Free-standing silica film containing Si nanocrystals: Photoluminescence, Raman scattering, optical waveguiding, and laser-induced thermal effects , 2005 .

[13]  Lorenzo Pavesi,et al.  Optical gain in silicon nanocrystals , 2001 .

[14]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .

[15]  D. J. Lockwood,et al.  Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.

[16]  J. Valenta,et al.  Microcavity-like leaky mode emission from a planar optical waveguide made of luminescent silicon nanocrystals , 2004 .

[17]  Pascal Normand,et al.  Charge storage and interface states effects in Si-nanocrystal memory obtained using low-energy Si+ implantation and annealing , 2000 .

[18]  L. D. Negro,et al.  Stimulated emission in nanocrystalline silicon superlattices , 2003 .

[19]  Markku Räsänen,et al.  Efficient wavelength-selective optical waveguiding in a silica layer containing Si nanocrystals , 2003 .

[20]  L. Khriachtchev,et al.  Optics of Si/SiO2 superlattices: Application to Raman scattering and photoluminescence measurements , 2000 .

[21]  L. Khriachtchev,et al.  Thermal annealing of Si/SiO2 materials: Modification of structural and photoluminescence emission properties , 2002 .

[22]  J. Keränen,et al.  Substrate-dependent crystallization and enhancement of visible photoluminescence in thermal annealing of Si/SiO2 superlattices , 2001 .

[23]  Lorenzo Pavesi,et al.  Will silicon be the photonics material of the third millennium , 2003 .