Rumor Spreading with No Dependence on Conductance

In this paper, we study how a collection of interconnected nodes can efficiently perform a global computation in the $\mathcal{GOSSIP}$ model of communication. In this model nodes do not know the global topology of the network and may only initiate contact with a single neighbor in each round. This contrasts with the much less restrictive $\mathcal{LOCAL}$ model, where a node may simultaneously communicate with all of its neighbors in a single round. A basic question in this setting is how many rounds of communication are required for the information dissemination problem, in which each node has some piece of information and is required to collect all others. In the $\mathcal{LOCAL}$ model this is quite simple: each node broadcasts all of its information in each round, and the number of rounds required will be equal to the diameter of the underlying communication graph. In the $\mathcal{GOSSIP}$ model, each node must independently choose a single neighbor to contact, and the lack of global information mak...

[1]  Thomas Sauerwald,et al.  Rumor spreading and vertex expansion on regular graphs , 2011, SODA '11.

[2]  Aravind Srinivasan,et al.  Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons , 2003, J. Comput. Syst. Sci..

[3]  Wei Tsang Ooi,et al.  Controlling Gossip Protocol Infection Pattern Using Adaptive Fanout , 2005, 25th IEEE International Conference on Distributed Computing Systems (ICDCS'05).

[4]  Bilel Derbel,et al.  On the locality of distributed sparse spanner construction , 2008, PODC '08.

[5]  George Giakkoupis,et al.  Tight bounds for rumor spreading in graphs of a given conductance , 2011, STACS.

[6]  Alistair Sinclair,et al.  Algorithms for Random Generation and Counting: A Markov Chain Approach , 1993, Progress in Theoretical Computer Science.

[7]  Thomas Sauerwald,et al.  Quasirandom Rumor Spreading: Expanders, Push vs. Pull, and Robustness , 2009, ICALP.

[8]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[9]  Hadas Shachnai,et al.  Fast information spreading in graphs with large weak conductance , 2011, SODA '11.

[10]  Seth Pettie Low Distortion Spanners , 2007, ICALP.

[11]  Mahmoud Fouz,et al.  Asymptotically Optimal Randomized Rumor Spreading , 2010, Electron. Notes Discret. Math..

[12]  Alejandro A. Schäffer,et al.  Graph spanners , 1989, J. Graph Theory.

[13]  Shang-Hua Teng,et al.  Spectral Sparsification of Graphs , 2008, SIAM J. Comput..

[14]  Harold N. Gabow,et al.  Forests, frames, and games: Algorithms for matroid sums and applications , 1992, STOC '88.

[15]  Benjamin Doerr,et al.  Quasirandom rumor spreading , 2008, SODA 2008.

[16]  Bernhard Haeupler,et al.  Simple, Fast and Deterministic Gossip and Rumor Spreading , 2012, SODA.

[17]  Thomas Sauerwald,et al.  Ultra-fast rumor spreading in social networks , 2012, SODA.

[18]  Jon M. Kleinberg,et al.  Protocols and impossibility results for gossip-based communication mechanisms , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[19]  Petar Maymounkov,et al.  Global computation in a poorly connected world: fast rumor spreading with no dependence on conductance , 2011, STOC '12.

[20]  George Giakkoupis,et al.  On the bit communication complexity of randomized rumor spreading , 2010, SPAA '10.

[21]  George Giakkoupis,et al.  Low Randomness Rumor Spreading via Hashing , 2012, STACS.

[22]  Eli Upfal,et al.  Randomized Broadcast in Networks , 1990, Random Struct. Algorithms.

[23]  W. Mader Homomorphieeigenschaften und mittlere Kantendichte von Graphen , 1967 .

[24]  George Giakkoupis,et al.  On the randomness requirements of rumor spreading , 2011, SODA '11.

[25]  Doug Terry,et al.  Epidemic algorithms for replicated database maintenance , 1988, OPSR.

[26]  Rachid Guerraoui,et al.  Asynchronous gossip , 2013, JACM.

[27]  Mahmoud Fouz,et al.  Asynchronous Rumor Spreading in Preferential Attachment Graphs , 2012, SWAT.

[28]  George Giakkoupis Tight Bounds for Rumor Spreading with Vertex Expansion , 2014, SODA.

[29]  Richard M. Karp,et al.  Randomized rumor spreading , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[30]  Bilel Derbel,et al.  Fast distributed graph partition and application , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[31]  George Giakkoupis,et al.  Rumor spreading and vertex expansion , 2012, SODA.

[32]  George Giakkoupis,et al.  Fast and Robust Information Spreading , 2012 .

[33]  David Peleg,et al.  An optimal synchronizer for the hypercube , 1987, PODC '87.

[34]  L. Dale,et al.  FORESTS , 1994, Restoration & Management Notes.

[35]  Kurt Mehlhorn,et al.  Additive spanners and (α, β)-spanners , 2010, TALG.

[36]  Thomas Sauerwald,et al.  Quasirandom Rumor Spreading on Expanders , 2009, Electron. Notes Discret. Math..

[37]  Mahmoud Fouz,et al.  Social networks spread rumors in sublogarithmic time , 2011, STOC '11.

[38]  Soumojit Sarkar,et al.  Fully dynamic randomized algorithms for graph spanners , 2012, TALG.

[39]  Jon M. Kleinberg,et al.  Spatial gossip and resource location protocols , 2001, JACM.

[40]  Alexandr V. Kostochka,et al.  Lower bound of the hadwiger number of graphs by their average degree , 1984, Comb..

[41]  A. Föhrenbach,et al.  SIMPLE++ , 2000, OR Spectr..

[42]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[43]  Silvio Lattanzi,et al.  Almost tight bounds for rumour spreading with conductance , 2010, STOC '10.

[44]  Anna Huber,et al.  Quasirandom Rumor Spreading on the Complete Graph Is as Fast as Randomized Rumor Spreading , 2009, SIAM J. Discret. Math..

[45]  Devavrat Shah,et al.  Computing separable functions via gossip , 2005, PODC '06.

[46]  Seth Pettie Distributed algorithms for ultrasparse spanners and linear size skeletons , 2009, Distributed Computing.