Modular 128-Channel $\Delta$ - $\Delta \Sigma$ Analog Front-End Architecture Using Spectrum Equalization Scheme for 1024-Channel 3-D Neural Recording Microsystems

We report an area- and energy-efficient integrated circuit architecture of a 128-channel <inline-formula> <tex-math notation="LaTeX">$\Delta$ </tex-math></inline-formula>-modulated <inline-formula> <tex-math notation="LaTeX">$\Delta \Sigma$ </tex-math></inline-formula> analog front-end (<inline-formula> <tex-math notation="LaTeX">$\Delta$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\Delta \Sigma$ </tex-math></inline-formula> AFE) for 1024-channel 3-D massive-parallel neural recording microsystems. Our platform has adopted a modularity of 128 channels and consists of eight multi-shank neural probes connected to individual AFEs through interposers in a small form factor. In order to reduce both area and energy consumption in the recording circuits, we implemented a spectrum equalization scheme to take advantage of the inherent spectral characteristics of neural signals, where most of the energy is confined in low frequencies and follows a ~1/f curve in the spectrum. This allows us to implement the AFE with a relaxed dynamic range by ~30 dB, thereby contributing to the significant reduction of both energy and area without sacrificing signal integrity. The <inline-formula> <tex-math notation="LaTeX">$\Delta$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\Delta \Sigma$ </tex-math></inline-formula> AFE was fabricated using 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS processes. The single-channel AFE consumes 3.05 <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> from 0.5 and 1.0 V supplies in an area of 0.05 mm<sup>2</sup> with 63.8-dB signal-to-noise-and-distortion ratio, 3.02 noise efficiency factor (NEF), and 4.56 NEF<sup>2</sup>V<sub>DD</sub>. We also have achieved an energy-area product, a figure-of-merit most critical for massive-parallel neural recording systems, of 6.34 fJ/<inline-formula> <tex-math notation="LaTeX">$\text{C}\cdot \text{s}\cdot$ </tex-math></inline-formula>mm<sup>2</sup>.

[1]  T. Blanche,et al.  Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. , 2005, Journal of neurophysiology.

[2]  Teresa H. Y. Meng,et al.  HermesE: A 96-Channel Full Data Rate Direct Neural Interface in 0.13 $\mu$ m CMOS , 2012, IEEE Journal of Solid-State Circuits.

[3]  R.R. Harrison,et al.  A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System , 2006, IEEE Journal of Solid-State Circuits.

[4]  Refet Firat Yazicioglu,et al.  An implantable 455-active-electrode 52-channel CMOS neural probe , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[5]  Brian P. Otis,et al.  Exploiting Electrocorticographic Spectral Characteristics for Optimized Signal Chain Design: A 1.08 W Analog Front End With Reduced ADC Resolution Requirements , 2016, IEEE Transactions on Biomedical Circuits and Systems.

[6]  R. Genov,et al.  256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes , 2009, IEEE Journal of Solid-State Circuits.

[7]  Roman Genov,et al.  27.3 All-wireless 64-channel 0.013mm2/ch closed-loop neurostimulator with rail-to-rail DC offset removal , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[8]  Daryl R. Kipke,et al.  Wireless implantable microsystems: high-density electronic interfaces to the nervous system , 2004, Proceedings of the IEEE.

[9]  Nancy Kopell,et al.  Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording , 2015, IEEE Transactions on Biomedical Engineering.

[10]  Yuanjin Zheng,et al.  A 0.45 V 100-Channel Neural-Recording IC With Sub-µW/Channel Consumption in 0.18 µm CMOS , 2013, IEEE Trans. Biomed. Circuits Syst..

[11]  Timothy Denison,et al.  Integrated circuit amplifiers for multi-electrode intracortical recording , 2009, Journal of neural engineering.

[12]  Shanthi Pavan,et al.  A Power Optimized Continuous-Time $\Delta \Sigma $ ADC for Audio Applications , 2008, IEEE Journal of Solid-State Circuits.

[13]  G. Buzsáki,et al.  Tools for probing local circuits: high-density silicon probes combined with optogenetics , 2015, Neuron.

[14]  K.D. Wise,et al.  A three-dimensional neural recording microsystem with implantable data compression circuitry , 2005, IEEE Journal of Solid-State Circuits.

[15]  Jian Xu,et al.  A Frequency Shaping Neural Recorder With 3 pF Input Capacitance and 11 Plus 4.5 Bits Dynamic Range , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[16]  Konrad P Kording,et al.  How advances in neural recording affect data analysis , 2011, Nature Neuroscience.

[17]  Jose M. Carmena,et al.  Exploiting the 1/f structure of neural signals for the design of integrated neural amplifiers , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[18]  Refet Firat Yazicioglu,et al.  22.7 A 966-electrode neural probe with 384 configurable channels in 0.13µm SOI CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[19]  G. Buzsáki,et al.  Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals , 2015, Neuron.

[20]  Fan Zhang,et al.  Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[21]  C. Bédard,et al.  Does the 1/f frequency scaling of brain signals reflect self-organized critical states? , 2006, Physical review letters.

[22]  W. Snelgrove,et al.  Excess loop delay in continuous-time delta-sigma modulators , 1999 .

[23]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[24]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[25]  Yong Lian,et al.  A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip , 2009, IEEE Journal of Solid-State Circuits.

[26]  Ying Yao,et al.  An Implantable 64-Channel Wireless Microsystem for Single-Unit Neural Recording , 2009, IEEE Journal of Solid-State Circuits.

[27]  Kassiri Hossein,et al.  27.3 All-wireless 64-channel 0.013mm2/ch closed-loop neurostimulator with rail-to-rail DC offset removal , 2017 .

[28]  K. Najafi,et al.  Gold-indium Transient Liquid Phase (TLP) wafer bonding for MEMS vacuum packaging , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[29]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .

[30]  Reid R. Harrison,et al.  A low-power, low-noise CMOS amplifier for neural recording applications , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[31]  Qing Bai,et al.  Single-unit neural recording with active microelectrode arrays , 2001, IEEE Transactions on Biomedical Engineering.

[32]  Refet Firat Yazicioglu,et al.  Two-Dimensional Multi-Channel Neural Probes With Electronic Depth Control , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[33]  Tobi Delbrück,et al.  Adaptive photoreceptor with wide dynamic range , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[34]  Euisik Yoon,et al.  A 4 µW/Ch analog front-end module with moderate inversion and power-scalable sampling operation for 3-D neural microsystems , 2011, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[35]  W. Liu,et al.  A 128-Channel 6 mW Wireless Neural Recording IC With Spike Feature Extraction and UWB Transmitter , 2009, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[36]  Ming-Yuan Cheng,et al.  3D probe array integrated with a front-end 100-channel neural recording ASIC , 2014 .

[37]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .

[38]  Kensall D. Wise,et al.  A 256-Site 3D CMOS Microelectrode Array for Multipoint Stimulation and Recording in the Central Nervous System , 2001 .

[39]  Jihyun Cho,et al.  Toward 1024-channel parallel neural recording: Modular Δ-ΔΣ analog front-end architecture with 4.84fJ/C-s·mm2 energy-area product , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[40]  Dong Han,et al.  A 0.45 V 100-Channel Neural-Recording IC With Sub-$\mu {\rm W}$/Channel Consumption in 0.18 $\mu{\rm m}$ CMOS , 2013, IEEE Transactions on Biomedical Circuits and Systems.