Advances in infrared GRIN: a review of novel materials towards components and devices

Novel optical materials capable of advanced functionality in the infrared will enable optical designs that can offer lightweight or small footprint solutions in both planar and bulk optical systems. UCF’s Glass Processing and Characterization Laboratory (GPCL) with our collaborators have been evaluating compositional design and processing protocols for both bulk and film strategies employing multi-component chalcogenide glasses (ChGs). These materials can be processed with broad compositional flexibility that allows tailoring of their transmission window, physical and optical properties, which allows them to be engineered for compatibility with other homogeneous amorphous or crystalline optical components. This paper reviews progress in forming ChG-based GRIN materials from diverse processing methodologies, including solution-derived ChG layers, poled ChGs with gradient compositional and surface reactivity behavior, nanocomposite bulk ChGs and glass ceramics, and meta-lens structures realized through multiphoton lithography (MPL).

[1]  Eirini Papagiakoumou,et al.  Pulsed infrared radiation transmission through chalcogenide glass fibers , 2007 .

[2]  D T Moore,et al.  Models for the thermal expansion coefficient and temperature coefficient of the refractive index in gradient-index glass. , 1985, Applied optics.

[3]  S D Fantone Refractive index and spectral models for gradient-index materials. , 1983, Applied optics.

[4]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[5]  Marc Douay,et al.  Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses , 2000 .

[6]  W. Marsden I and J , 2012 .

[7]  Tigran Galstian,et al.  Temperature dependence of Bragg reflectors in chalcogenide As 2 S 3 glass slab waveguides , 2000 .

[8]  J. Si,et al.  Photoinduced stable second-harmonic generation in chalcogenide glasses. , 2001, Optics letters.

[9]  George I. Stegeman,et al.  Second-order nonlinear susceptibility in As/sub 2/S/sub 3/ chalcogenide thin glass films , 2000 .

[10]  L. Glebov,et al.  High-efficiency bragg gratings in photothermorefractive glass. , 1999, Applied optics.

[11]  Duncan T. Moore,et al.  Free-space infrared Mach–Zehnder interferometer for relative index of refraction measurement of gradient index optics , 2017 .

[12]  Craig B. Arnold,et al.  Spin-coating of Ge23Sb7S70 chalcogenide glass thin films , 2009 .

[13]  D T Moore,et al.  Design of a gradient-index photographic objective. , 1982, Applied optics.

[14]  Oleg M. Efimov,et al.  Photo-structural transformation of chalcogenide glasses under non-linear absorption of laser radiation , 1997 .

[15]  Tigran Galstian,et al.  Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy , 2001 .

[16]  Theresa S. Mayer,et al.  Evidence of spatially selective refractive index modification in 15GeSe 2 -45As 2 Se 3 -40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications , 2017 .

[17]  Duncan T. Moore,et al.  Application of a Multiple Cavity Fabry-Perot Interferometer for Measuring the Thermal Expansion and Temperature Dependence of Refractive Index in New Gradient-Index Materials , 2012 .

[18]  Kathleen Richardson,et al.  Ultralow Dispersion Multicomponent Thin‐Film Chalcogenide Glass for Broadband Gradient‐Index Optics , 2018, Advanced materials.

[19]  Scott Sparrold,et al.  Achrotech: achromat cost versus performance for conventional, diffractive, and GRIN components , 2016, Optical Engineering + Applications.

[20]  Martin Richardson,et al.  Femtosecond laser deep hole drilling of silicate glasses in air , 2001 .

[21]  Kye-Sung Lee,et al.  Nondestructive metrology by optical coherence tomography empowering manufacturing iterations of layered polymeric optical materials , 2013 .

[22]  Tigran Galstian,et al.  Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides , 2001 .

[23]  Kathleen Richardson,et al.  Final Shape of Precision Molded Optics: Part II—Validation and Sensitivity to Material Properties and Process Parameters , 2012 .

[24]  Martin Richardson,et al.  Engineering Glassy Chalcogenide Materials for Integrated Optics Applications , 2007 .

[25]  J. D. Musgraves,et al.  Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range. , 2011, The Review of scientific instruments.

[26]  Y. Zou,et al.  Chalcogenide glasses for advanced photonic and photovoltaic applications , 2015 .

[27]  T Izumitani,et al.  Gradient-index rod lens made by a double ion-exchange process. , 1988, Applied optics.

[28]  Craig B. Arnold,et al.  Structural properties of solution processed Ge 23 Sb 7 S 70 glass materials , 2012 .

[29]  Jacques Lucas,et al.  Evaluation of glass fibers from the Ga–Ge–Sb–Se system for infrared applications , 2004 .

[30]  K. D. Kolwicz,et al.  Silver Halide‐Chalcogenide Glass Inorganic Resists for X‐Ray Lithography , 1980 .

[31]  Theresa S. Mayer,et al.  Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography , 2017 .

[32]  Juejun Hu,et al.  Development of chipscale chalcogenide glass based infrared chemical sensors , 2011, OPTO.

[33]  Thomas G. Alley,et al.  Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica , 1999 .

[34]  Danvers E. Johnston,et al.  Deposition of Ge23Sb7S70 chalcogenide glass films by electrospray , 2015 .

[35]  Erick Koontz,et al.  Characterization of structural relaxation in inorganic glasses using length dilatometry , 2015 .

[36]  Kathleen Richardson,et al.  Micro-structuring the surface reactivity of a borosilicate glass via thermal poling , 2016 .

[37]  Kathleen Richardson,et al.  Evolution of glass properties during a substitution of S by Se in Ge 28 Sb 12 S 60 − x Se x glass network , 2012 .

[38]  J. David Musgraves,et al.  Engineering novel infrared glass ceramics for advanced optical solutions , 2016, SPIE Defense + Security.

[39]  Jasbinder S. Sanghera,et al.  Active and passive chalcogenide glass optical fibers for IR applications: a review , 1999 .

[40]  J. David Musgraves,et al.  Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60 −xSex glass network , 2012 .

[41]  Oleg M. Efimov,et al.  Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses , 2001 .

[42]  Jasbinder S. Sanghera,et al.  DEVELOPMENT AND APPLICATIONS OF CHALCOGENIDE GLASS OPTICAL FIBERS AT NRL , 2001 .

[43]  Kathleen Richardson,et al.  Luminescence from neodymium-ion-implanted As 2 S 3 waveguides , 1998 .

[44]  Benn Gleason,et al.  Refractive Index and Thermo‐Optic Coefficients of Ge‐As‐Se Chalcogenide Glasses , 2016 .

[45]  Anupama Yadav,et al.  Influence of phase separation on structure–property relationships in the (GeSe2–3As2Se3)1−xPbSex glass system , 2017 .

[46]  J. David Musgraves,et al.  Optimization of manufacturability of chalcogenide materials for mid-infrared optical components , 2014 .

[47]  Craig B. Arnold,et al.  Structural properties of solution processed Ge23Sb7S70 glass materials , 2012 .

[48]  Kathleen Richardson,et al.  Compositional dependence of structural relaxation behavior in the Ge-As-Se system characterized by length dilatometry , 2014 .

[49]  Guy Beadie,et al.  Athermal achromat lens enabled by polymer gradient index optics , 2016, SPIE Defense + Security.

[50]  Kathleen Richardson,et al.  Final Shape of Precision Molded Optics: Part I—Computational Approach, Material Definitions and the Effect of Lens Shape , 2012 .

[51]  Andreas Tünnermann,et al.  Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica. , 2006, Optics express.

[52]  R. A. Myers,et al.  Large second-order nonlinearity in poled fused silica. , 1991, Optics letters.

[53]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[54]  D T Moore,et al.  Gradient infrared optical material prepared by a chemical vapor deposition process. , 1986, Applied optics.

[55]  Kathleen Richardson,et al.  Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling , 2015 .

[56]  Sasan Fathpour,et al.  Electrospray Deposition of Uniform Thickness Ge 23 Sb 7 S 70 and As 40 S 60 Chalcogenide Glass Films , 2016 .

[57]  Kathleen Richardson,et al.  Demonstration of dimensional control and stabilization of second harmonic electro-optical response in chalcogenide glasses , 2018 .

[58]  Anupama Yadav,et al.  Long-lived monolithic micro-optics for multispectral GRIN applications , 2018, Scientific Reports.

[59]  V A Kamensky,et al.  High-Power As-S Glass Fiber Delivery Instrument for Pulse YAG:Er Laser Radiation. , 1998, Applied optics.

[60]  Hongtao Lin,et al.  Solution Processing and Resist‐Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration , 2014 .

[61]  Martin Richardson,et al.  Refractive index patterning of infrared glass ceramics through laser-induced vitrification [Invited] , 2018, Optical Materials Express.

[62]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[63]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[64]  Spencer Novak,et al.  Nanoparticles in Solution-Derived Chalcogenide Glass Films , 2012 .

[65]  Daniel Gibson,et al.  Layered chalcogenide glass structures for IR lenses , 2014, Defense + Security Symposium.

[66]  A. Villeneuve,et al.  Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form , 1998 .

[67]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[68]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[69]  D T Moore,et al.  Measurement of the differential thermal expansion and temperature dependence of refractive index in gradient-index glass. , 1985, Applied optics.

[70]  Laura Sisken,et al.  Laser-induced crystallization mechanisms in chalcogenide glass materials for advanced optical functionality , 2017 .

[71]  Pao Tai Lin,et al.  Mid-infrared materials and devices on a Si platform for optical sensing , 2014, Science and technology of advanced materials.

[72]  Kathleen Richardson,et al.  Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques , 2011 .

[73]  Evelyne Fargin,et al.  Structural Rearrangements and Second-Order Optical Response in the Space Charge Layer of Thermally Poled Sodium−Niobium Borophosphate Glasses , 2007 .

[74]  G. Pfister,et al.  Electronic properties of chalcogenide glasses and their use in xerography , 1979 .

[75]  C. Askins,et al.  Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients. , 1991, Applied optics.

[76]  Kathleen Richardson,et al.  Designing mid-wave infrared (MWIR) thermo-optic coefficient (dn/dT) in chalcogenide glasses , 2016, SPIE Defense + Security.

[77]  Sophie LaRochelle,et al.  First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses , 1999 .

[78]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[79]  Thierry Cardinal,et al.  Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties , 2012 .

[80]  Thierry Cardinal,et al.  Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials , 2016 .

[81]  Pao Tai Lin,et al.  Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films. , 2017, ACS applied materials & interfaces.

[82]  Theresa S. Mayer,et al.  Processing and fabrication of micro-structures by multiphoton lithography in germanium-doped arsenic selenide , 2018, Optical Materials Express.

[83]  Daniel Gibson,et al.  Homogeneous and Gradient Index (GRIN) Materials For Multi-Band IR Optics , 2014 .

[84]  Kathleen Richardson,et al.  Electrospray deposition of quantum dot-doped Ge 23 Sb 7 S 70 chalcogenide glass films , 2017 .

[85]  Paul A Lane,et al.  Optical properties of a bio-inspired gradient refractive index polymer lens. , 2008, Optics express.

[86]  N. Carlie,et al.  A SOLUTION-BASED APPROACH TO THE FABRICATION OF NOVEL CHALCOGENIDE GLASS MATERIALS AND STRUCTURES , 2010 .

[87]  David Jones High performance , 1989, Nature.

[88]  Tigran Galstian,et al.  Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses , 1999 .

[89]  Dong-Joon Lee,et al.  Third order cascaded Raman wavelength shifting in chalcogenide fibers , 2006, QELS 2006.

[90]  Daniel Gibson,et al.  IR GRIN optics: design and fabrication , 2017, Defense + Security.

[91]  Martin Richardson,et al.  PROGRESS ON THE FABRICATION OF ON-CHIP, INTEGRATED CHALCOGENIDE GLASS (CHG)-BASED SENSORS , 2010 .

[92]  Hongtao Lin,et al.  High‐Performance, High‐Index‐Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non‐planar Substrates , 2013 .

[93]  Ishwar D. Aggarwal,et al.  Chalcogenide fibers deliver high IR power , 1996 .

[94]  Theresa S. Mayer,et al.  Multi-photon lithography of 3 D microstructures in As 2 S 3 and Ge 5 ( As 2 Se 3 ) 95 chalcogenide glasses , 2016 .

[95]  Daniel Gibson,et al.  IR-GRIN optics for imaging , 2016, SPIE Defense + Security.

[96]  Martin Richardson,et al.  Progress on the Fabrication of On-Chip, Integrated Chalcogenide Glass (ChG)-Based Sensors , 2009 .

[97]  Peter A. Thielen Nonlinear optical properties of chalcogenide glasses , 2004 .

[98]  D T Moore,et al.  Real-time index profile measurement during GRIN glass fabrication. , 1988, Applied optics.

[99]  Kathleen Richardson,et al.  Photoinduced self-developing relief gratings in thin film chalcogenide As/sub 2/S/sub 3/ glasses , 1997 .