A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility

[1]  Andrew C. Adey,et al.  Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. , 2018, Molecular cell.

[2]  Omri Wurtzel,et al.  Cell type transcriptome atlas for the planarian Schmidtea mediterranea , 2018, Science.

[3]  Fabian J Theis,et al.  Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics , 2018, Science.

[4]  Mingyao Li,et al.  Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease , 2018, Science.

[5]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[6]  Andrew C. Adey,et al.  Highly scalable generation of DNA methylation profiles in single cells , 2018, Nature Biotechnology.

[7]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[8]  D. Dickel,et al.  Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation , 2018, Nature Neuroscience.

[9]  Hannah A. Pliner,et al.  The cis-regulatory dynamics of embryonic development at single cell resolution , 2017, Nature.

[10]  P. Kharchenko,et al.  Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain , 2017, Nature Biotechnology.

[11]  S. Quake,et al.  Transcriptomic characterization of 20 organs and tissues from mouse at single cell resolution creates a Tabula Muris , 2017, bioRxiv.

[12]  James T. Webber,et al.  Single-cell transcriptomic characterization of 20 organs and tissues from individual mice creates a Tabula Muris , 2017 .

[13]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[14]  Andrew C. Adey,et al.  Single-Cell Transcriptional Profiling of a Multicellular Organism , 2017 .

[15]  Justin P Sandoval,et al.  Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex , 2017, Science.

[16]  P. Donnelly,et al.  Genome-wide genetic data on ~500,000 UK Biobank participants , 2017, bioRxiv.

[17]  T. Tuschl,et al.  Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. , 2017, JCI insight.

[18]  Salah Ayoub,et al.  The Drosophila Embryo at Single Cell Transcriptome Resolution , 2017, bioRxiv.

[19]  Andrew C. Adey,et al.  Sequencing thousands of single-cell genomes with combinatorial indexing , 2017 .

[20]  Kirsten L. Frieda,et al.  Synthetic recording and in situ readout of lineage information in single cells , 2016, Nature.

[21]  William Stafford Noble,et al.  Massively multiplex single-cell Hi-C , 2016, Nature Methods.

[22]  G. Wagner,et al.  The origin and evolution of cell types , 2016, Nature Reviews Genetics.

[23]  Luca Scrucca,et al.  mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models , 2016, R J..

[24]  James A. Gagnon,et al.  Whole-organism lineage tracing by combinatorial and cumulative genome editing , 2016, Science.

[25]  M. Ronaghi,et al.  Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain , 2016, Science.

[26]  Janan T. Eppig,et al.  Inferring gene-to-phenotype and gene-to-disease relationships at Mouse Genome Informatics: challenges and solutions , 2016, J. Biomed. Semant..

[27]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[28]  Vladimir B. Bajic,et al.  HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models , 2015, Nucleic Acids Res..

[29]  David R. Kelley,et al.  Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks , 2015, bioRxiv.

[30]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[31]  Jonathan M. Mudge,et al.  Creating reference gene annotation for the mouse C57BL6/J genome assembly , 2015, Mammalian Genome.

[32]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[33]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[34]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[35]  I. Amit,et al.  Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvironment , 2014, Cell.

[36]  Andrew C. Adey,et al.  Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing , 2014, Nature Genetics.

[37]  Fidencio J. Neri,et al.  Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution , 2014, Science.

[38]  Shane J. Neph,et al.  A comparative encyclopedia of DNA elements in the mouse genome , 2014, Nature.

[39]  N. Friedman,et al.  Chromatin state dynamics during blood formation , 2014, Science.

[40]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[41]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[42]  J. Meijerink,et al.  Myocyte enhancer factor 2C in hematopoiesis and leukemia , 2014, Oncogene.

[43]  S. Josselyn,et al.  Emerging roles for MEF2 transcription factors in memory , 2014, Genes, brain, and behavior.

[44]  Joseph K. Pickrell Joint analysis of functional genomic data and genome-wide association studies of 18 human traits , 2013, bioRxiv.

[45]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[46]  Raffaella Casadei,et al.  An estimation of the number of cells in the human body , 2013, Annals of human biology.

[47]  I. Nookaew,et al.  Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods , 2013, Nucleic acids research.

[48]  David Haussler,et al.  The UCSC genome browser and associated tools , 2012, Briefings Bioinform..

[49]  A. Ganser,et al.  Morphology and quantitative composition of hematopoietic cells in murine bone marrow and spleen of healthy subjects , 2013, Annals of Hematology.

[50]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[51]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[52]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[53]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[54]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[55]  Andrew C. Adey,et al.  Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition , 2010, Genome Biology.

[56]  I. Maillard,et al.  From the cradle to the grave: activities of GATA‐3 throughout T‐cell development and differentiation , 2010, Immunological reviews.

[57]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[58]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[59]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[60]  William Stafford Noble,et al.  Global mapping of protein-DNA interactions in vivo by digital genomic footprinting , 2009, Nature Methods.

[61]  W. de Laat,et al.  Joining the loops: β‐Globin gene regulation , 2008, IUBMB life.

[62]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[63]  D. E. Olins,et al.  The human granulocyte nucleus: Unusual nuclear envelope and heterochromatin composition. , 2008, European journal of cell biology.

[64]  Shayn M Peirce,et al.  EphB4 Expression Along Adult Rat Microvascular Networks: EphB4 Is More Than a Venous Specific Marker , 2007, Microcirculation.

[65]  C. Nusbaum,et al.  Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. , 2006, Genome research.

[66]  M. H. Ross,et al.  Histology: A Text and Atlas: With Correlated Cell and Molecular Biology. Eighth Edition, 2018 Authors: Wojciech Pawlina; Michael H. Ross , 2019, Morphologia.

[67]  Cynthia L. Smith,et al.  The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information , 2004, Genome Biology.

[68]  Erik Splinter,et al.  Looping and interaction between hypersensitive sites in the active beta-globin locus. , 2002, Molecular cell.

[69]  K. Alitalo,et al.  VEGF‐C and VEGF‐D expression in neuroendocrine cells and their receptor, VEGFR‐3, in fenestrated blood vessels in human tissues , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.