Nanostructured metal–organic frameworks and their bio-related applications

Abstract Miniaturization of metal–organic frameworks (MOFs) results of great interest in order to integrate these materials in strategic applications such as sensing or drug delivery. This emerging class of nanoscaled MOFs (nanoMOFs), combining the intrinsic properties of the porous materials and the benefits of nanostructures, are expected to improve in some cases the performances of classical bulk crystalline MOFs. In the field of biomedicine, the benefits of MOF miniaturization have already been proved to be effective, not only because establishes a strong influence over the choice of the administration route but also governs their in vivo fate and therefore, their toxicity and/or activity. The scope of this review focuses on the preparation of nanostructured MOFs and their related biomedical applications. We will cover all aspects concerning the various synthetic methods reported so far, as well as the shaping and surface engineering routes required for their use in biomedicine.

[1]  Allan J. Jacobson,et al.  Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions , 2005 .

[2]  Edward Lester,et al.  Instant MOFs: continuous synthesis of metal-organic frameworks by rapid solvent mixing. , 2012, Chemical communications.

[3]  David Grosso,et al.  Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials , 2011, Advanced materials.

[4]  Á. Lozano,et al.  Synthesis and evaluation of properties of novel poly(benzimidazole‐amide)s , 2008 .

[5]  L. Chou,et al.  Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. , 2014, ACS nano.

[6]  B. Yan,et al.  Postsynthetic lanthanide functionalization of nanosized metal-organic frameworks for highly sensitive ratiometric luminescent thermometry. , 2014, Chemical communications.

[7]  A. Lascialfari,et al.  Investigation on NMR relaxivity of nano-sized cyano-bridged coordination polymers. , 2013, Inorganic chemistry.

[8]  Sajid Bashir,et al.  Highly Potent Bactericidal Activity of Porous Metal‐Organic Frameworks , 2012, Advanced healthcare materials.

[9]  Yahong Chen,et al.  Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. , 2009, Cytokine.

[10]  R. Fischer,et al.  Nanocrystals of [Cu3(btc)2] (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study. , 2009, Chemical communications.

[11]  C. Serre,et al.  A biocompatible porous Mg-gallate metal-organic framework as an antioxidant carrier. , 2015, Chemical communications.

[12]  M. D. Rowe,et al.  Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. , 2009, Biomacromolecules.

[13]  Guoqing Zhang,et al.  Hollow metal-organic framework nanospheres via emulsion-based interfacial synthesis and their application in size-selective catalysis. , 2014, ACS applied materials & interfaces.

[14]  Mei Li,et al.  Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse Microemulsions , 2000 .

[15]  Shengqian Ma,et al.  How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows. , 2012, Journal of the American Chemical Society.

[16]  Michael J Zaworotko,et al.  2:1 cocrystals of homochiral and achiral amino acid zwitterions with Li+ salts: water-stable zeolitic and diamondoid metal-organic materials. , 2011, Journal of the American Chemical Society.

[17]  Y. Goto,et al.  Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. , 2010, Antioxidants & redox signaling.

[18]  Rui Wang Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[19]  Yunfeng Lu,et al.  Aerosol-assisted self-assembly of mesostructured spherical nanoparticles , 1999, Nature.

[20]  M. V. Lozano,et al.  Heparin‐Engineered Mesoporous Iron Metal‐Organic Framework Nanoparticles: Toward Stealth Drug Nanocarriers , 2015, Advanced healthcare materials.

[21]  Woo Kyung Moon,et al.  Comparison of Two Ultrasmall Superparamagnetic Iron Oxides on Cytotoxicity and MR Imaging of Tumors , 2012, Theranostics.

[22]  Xinchen Wang,et al.  Water oxidation electrocatalysis by a zeolitic imidazolate framework. , 2014, Nanoscale.

[23]  Ruxandra Gref,et al.  Impact of phosphorylation on the encapsulation of nucleoside analogues within porous iron(iii) metal-organic framework MIL-100(Fe) nanoparticles. , 2013, Journal of materials chemistry. B.

[24]  Wenbin Lin,et al.  Modular synthesis of functional nanoscale coordination polymers. , 2009, Angewandte Chemie.

[25]  A. Feldhoff,et al.  Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework , 2009 .

[26]  Ruxandra Gref,et al.  In depth analysis of the in vivo toxicity of nanoparticles of porous iron(III) metal–organic frameworks , 2013 .

[27]  Z. Su,et al.  Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. , 2014, Chemical communications.

[28]  Y. Chevalier,et al.  Percutaneous release of caffeine from microemulsion, emulsion and gel dosage forms. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[29]  A. Abbasi,et al.  A novel trinuclear zinc metal–organic network: Synthesis, X-ray diffraction structures, spectroscopic and biocompatibility studies , 2013 .

[30]  Chia‐Her Lin,et al.  Trypsin‐Immobilized Metal–Organic Framework as a Biocatalyst In Proteomics Analysis , 2012 .

[31]  Fausthon F. da Silva,et al.  Induction of cancer cell death by apoptosis and slow release of 5-fluoracil from metal-organic frameworks Cu-BTC. , 2013, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[32]  Ruxandra Gref,et al.  Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A , 2011 .

[33]  J. Eckert,et al.  Interaction of hydrogen with accessible metal sites in the metal-organic frameworks M(2)(dhtp) (CPO-27-M; M = Ni, Co, Mg). , 2010, Chemical communications.

[34]  J. Lammertyn,et al.  Miniaturized Layer-by-Layer Deposition of Metal–Organic Framework Coatings through Digital Microfluidics , 2013 .

[35]  Francesco Borghi,et al.  Host-guest interactions in Fe(III)-trimesate MOF nanoparticles loaded with doxorubicin. , 2014, The journal of physical chemistry. B.

[36]  M. Hartmann,et al.  Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends , 2010 .

[37]  Alexander J. Blake,et al.  High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. , 2009, Journal of the American Chemical Society.

[38]  Wenbin Lin,et al.  Nanoscale coordination polymers for platinum-based anticancer drug delivery. , 2008, Journal of the American Chemical Society.

[39]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[40]  Christopher Poon,et al.  Metal-organic frameworks as sensory materials and imaging agents. , 2014, Inorganic chemistry.

[41]  Gérard Férey,et al.  Time-resolved in situ diffraction study of the solvothermal crystallization of some prototypical metal-organic frameworks. , 2010, Angewandte Chemie.

[42]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[43]  T. Groy,et al.  Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid , 1996 .

[44]  Gérard Férey,et al.  BioMOFs: metal-organic frameworks for biological and medical applications. , 2010, Angewandte Chemie.

[45]  A. Aykaç,et al.  A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles , 2015, Scientific Reports.

[46]  Sumit Arora,et al.  Nanotoxicology and in vitro studies: the need of the hour. , 2012, Toxicology and applied pharmacology.

[47]  Wenbin Lin,et al.  Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. , 2008, Journal of the American Chemical Society.

[48]  F. Huo,et al.  Metal-organic framework composites: from fundamentals to applications. , 2015, Nanoscale.

[49]  I. Imaz,et al.  Relaxometry studies of a highly stable nanoscale metal-organic framework made of Cu(II), Gd(III), and the macrocyclic DOTP. , 2013, Journal of the American Chemical Society.

[50]  Ping Yu,et al.  Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. , 2013, Analytical chemistry.

[51]  M. Pileni Colloidal self-assemblies used as templates to control size, shape and self-organization of nanoparticles , 1998 .

[52]  T. Bein,et al.  Oriented growth of the metal organic framework Cu(3)(BTC)(2)(H(2)O)(3).xH(2)O tunable with functionalized self-assembled monolayers. , 2007, Journal of the American Chemical Society.

[53]  O. Shekhah,et al.  MOF thin films: existing and future applications. , 2011, Chemical Society reviews.

[54]  Tracy K. Pettinger,et al.  Nanopharmaceuticals (part 1): products on the market , 2014, International journal of nanomedicine.

[55]  Igor L. Medintz,et al.  Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. , 2013, Chemical reviews.

[56]  Feng Chen,et al.  Microwave-assisted preparation of inorganic nanostructures in liquid phase. , 2014, Chemical reviews.

[57]  E. Monjok,et al.  Inhibitory action of hydrogen sulfide on muscarinic receptor-induced contraction of isolated porcine irides. , 2008, Experimental eye research.

[58]  Nathaniel L Rosi,et al.  Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. , 2009, Journal of the American Chemical Society.

[59]  M. Roeffaers,et al.  Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability , 2011, Nature Chemistry.

[60]  Luís D. Carlos,et al.  Luminescent multifunctional lanthanides-based metal-organic frameworks. , 2011, Chemical Society reviews.

[61]  X. Jing,et al.  A single-step emulsion approach to prepare fluorescent nanoscale coordination polymers for bioimaging , 2014 .

[62]  R. Tannenbaum,et al.  Synthesis and Structure Characterization of Copper Terephthalate Metal–Organic Frameworks , 2009 .

[63]  Zhiyong Guo,et al.  A luminescent mixed-lanthanide metal-organic framework thermometer. , 2012, Journal of the American Chemical Society.

[64]  Wenbin Lin,et al.  Coercing bisphosphonates to kill cancer cells with nanoscale coordination polymers. , 2012, Chemical communications.

[65]  Qiang Xu,et al.  Metal-organic framework composites. , 2014, Chemical Society reviews.

[66]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[67]  Wenbin Lin,et al.  Nanoscale Metal–Organic Frameworks: Magnetic Resonance Imaging Contrast Agents and Beyond , 2010 .

[68]  A. Mendes,et al.  Peptide-based solids: porosity and zeolitic behavior , 2012 .

[69]  M. Drofenik,et al.  SYNTHESIS OF MATERIALS WITHIN REVERSE MICELLES , 2005 .

[70]  Andrew J. Binder,et al.  Synthesis of metal–organic framework particles and thin films via nanoscopic metal oxide precursors , 2015 .

[71]  Jihyun An,et al.  Metal-biomolecule frameworks (MBioFs). , 2011, Chemical communications.

[72]  Xiaoyan Ma,et al.  Morphology effect on the luminescent property and antibacterial activity of coordination polymer particles with identical crystal structures , 2011 .

[73]  N. Roher,et al.  Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal-organic framework nanoparticles. , 2015, Chemistry.

[74]  Iane B. Vasconcelos,et al.  Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8 , 2012 .

[75]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[76]  R. Kuroda,et al.  Formation of 1 D and 3 D coordination polymers in the solid state induced by mechanochemical and annealing treatments: bis(3-cyano-pentane-2,4-dionato) metal complexes. , 2008, Chemistry.

[77]  Christian Serre,et al.  Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal−Organic Frameworks , 2013 .

[78]  M. Pileni Fabrication and Properties of Nanosized Material Made by Using Colloidal Assemblies as Templates , 1998 .

[79]  J. Caro,et al.  Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy , 2012 .

[80]  R. Alberto,et al.  Chemistry and biological activities of CO-releasing molecules (CORMs) and transition metal complexes. , 2007, Dalton transactions.

[81]  Matthew R. Hill,et al.  Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks , 2014, Scientific Reports.

[82]  M. Pileni The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals , 2003, Nature materials.

[83]  Wei He,et al.  Well-defined metal-organic framework hollow nanocages. , 2014, Angewandte Chemie.

[84]  Nathaniel L. Rosi,et al.  Strain-promoted "click" modification of a mesoporous metal-organic framework. , 2012, Journal of the American Chemical Society.

[85]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[86]  Joanne I. Yeh,et al.  Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework , 2012, Nature Communications.

[87]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[88]  Ali Morsali,et al.  Dense coating of surface mounted CuBTC Metal-Organic Framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. , 2012, Ultrasonics sonochemistry.

[89]  Stephanie E. A. Gratton,et al.  The effect of particle design on cellular internalization pathways , 2008, Proceedings of the National Academy of Sciences.

[90]  Youngmee Kim,et al.  Bio-functionalization of metal-organic frameworks by covalent protein conjugation. , 2011, Chemical communications.

[91]  D. Bradshaw,et al.  Magnetic MOF microreactors for recyclable size-selective biocatalysis† †Electronic supplementary information (ESI) available: Experimental procedures, calibration curves and additional figures relating to capsule characterisation and biocatalysis. See DOI: 10.1039/c4sc03367a Click here for additiona , 2014, Chemical science.

[92]  Wenbin Lin,et al.  Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. , 2008, Angewandte Chemie.

[93]  E. Fattal,et al.  Nanomedicine technology: current achievements and new trends , 2014, Clinical and Translational Imaging.

[94]  Amy J. Cairns,et al.  Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach. , 2013, Journal of the American Chemical Society.

[95]  A. Douhal,et al.  A "ship in a bottle" strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. , 2014, Journal of medicinal chemistry.

[96]  R. Clowes,et al.  Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) , 2010 .

[97]  E. Wang,et al.  Chiral Nanoporous Metal‐Organic Frameworks with High Porosity as Materials for Drug Delivery , 2011, Advances in Materials.

[98]  Jing Chen,et al.  Copper metal-organic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose. , 2014, Nanoscale.

[99]  R. Banerjee,et al.  Mechanical downsizing of a gadolinium(III)-based metal-organic framework for anticancer drug delivery. , 2014, Chemistry.

[100]  V. Falk,et al.  Towards industrial use of metal-organic framework: Impact of shaping on the MOF properties , 2014 .

[101]  Aarti,et al.  Forming MOFs into spheres by use of molecular gastronomy methods. , 2014, Chemistry.

[102]  C. Serre,et al.  Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr). , 2009, Chemical communications.

[103]  Q. Yuan,et al.  Exceptional function of nanoporous metal organic framework particles in emulsion stabilisation. , 2013, Chemical communications.

[104]  Weiqi Wang,et al.  Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. , 2008, Chemical communications.

[105]  D. Olson,et al.  Encapsulated recyclable porous materials: an effective moisture-triggered fragrance release system. , 2013, Chemical communications.

[106]  David Grosso,et al.  Green scalable aerosol synthesis of porous metal-organic frameworks. , 2013, Chemical communications.

[107]  B. Lotsch,et al.  Additive-mediated size control of MOF nanoparticles , 2013 .

[108]  K. Landfester,et al.  The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. , 2010, Biomaterials.

[109]  Xiang Lin,et al.  Highly porous and robust scandium-based metal-organic frameworks for hydrogen storage. , 2011, Chemical communications.

[110]  Jia Song,et al.  Hemin@metal–organic framework with peroxidase-like activity and its application to glucose detection , 2013 .

[111]  S. Kaskel,et al.  Crystal Growth of the Metal—Organic Framework Cu3(BTC)2 on the Surface of Pulp Fibers , 2009 .

[112]  C. Serre,et al.  A Zn azelate MOF: combining antibacterial effect , 2015 .

[113]  Alexandre F. P. Ferreira,et al.  Suitability of Cu-BTC extrudates for propane–propylene separation by adsorption processes , 2011 .

[114]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[115]  Christian Serre,et al.  Biodegradable therapeutic MOFs for the delivery of bioactive molecules. , 2010, Chemical communications.

[116]  M. Marcello,et al.  MOF‐Polymer Composite Microcapsules Derived from Pickering Emulsions , 2013, Advanced materials.

[117]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[118]  Demin Liu,et al.  Nanoscale Metal–Organic Frameworks for the Co-Delivery of Cisplatin and Pooled siRNAs to Enhance Therapeutic Efficacy in Drug-Resistant Ovarian Cancer Cells , 2014, Journal of the American Chemical Society.

[119]  Songping D. Huang,et al.  Biocompatible Prussian blue nanoparticles: Preparation, stability, cytotoxicity, and potential use as an MRI contrast agent , 2010 .

[120]  R. Fischer,et al.  Surface structure of metal-organic framework grown on self-assembled monolayers revealed by high-resolution atomic force microscopy. , 2008, Journal of the American Chemical Society.

[121]  Yun Wang,et al.  Controllable syntheses of porous metal-organic frameworks: encapsulation of Ln(III) cations for tunable luminescence and small drug molecules for efficient delivery. , 2013, Chemistry.

[122]  P. Couvreur,et al.  Quantification of fumaric acid in liver, spleen and urine by high-performance liquid chromatography coupled to photodiode-array detection. , 2011, Journal of pharmaceutical and biomedical analysis.

[123]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[124]  C. Gaudin,et al.  Rationalization of the entrapping of bioactive molecules into a series of functionalized porous zirconium terephthalate MOFs. , 2013, Journal of materials chemistry. B.

[125]  Peng Huang,et al.  Zeolitic Imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. , 2012, Dalton transactions.

[126]  Kent E. Pinkerton,et al.  Meeting Report: Hazard Assessment for Nanoparticles—Report from an Interdisciplinary Workshop , 2007, Environmental health perspectives.

[127]  Martin R. Lohe,et al.  Metal-organic framework (MOF) aerogels with high micro- and macroporosity. , 2009, Chemical communications.

[128]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[129]  Samir Mitragotri,et al.  Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies , 2014, Nature Reviews Drug Discovery.

[130]  Michael W Anderson,et al.  Crystal growth of MOF-5 using secondary building units studied by in situ atomic force microscopy , 2014 .

[131]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[132]  Robert Langer,et al.  Transdermal drug delivery , 2008, Nature Biotechnology.

[133]  H. Zou,et al.  Polymer/silica nanocomposites: preparation, characterization, properties, and applications. , 2008, Chemical reviews.

[134]  A. Benin,et al.  Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. , 2009, Journal of the American Chemical Society.

[135]  Wenbin Lin,et al.  Nanoscale Metal–Organic Framework for Highly Effective Photodynamic Therapy of Resistant Head and Neck Cancer , 2014, Journal of the American Chemical Society.

[136]  Stewart J. Warrender,et al.  Multirate delivery of multiple therapeutic agents from metal-organic frameworks , 2014 .

[137]  Weili Lin,et al.  Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. , 2006, Journal of the American Chemical Society.

[138]  B. Smarsly,et al.  Metal-organic framework nanofibers via electrospinning. , 2011, Chemical communications.

[139]  T. Friščić,et al.  Ion- and liquid-assisted grinding: improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. , 2010, Angewandte Chemie.

[140]  Gérard Férey,et al.  A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. , 2004, Angewandte Chemie.

[141]  M. Muhler,et al.  Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide. , 2013, Chemistry.

[142]  Youngmee Kim,et al.  Two-dimensional metal-organic frameworks with blue luminescence. , 2010, Dalton transactions.

[143]  M. Foldvari,et al.  DNA delivery for vaccination and therapeutics through the skin. , 2006, Current drug delivery.

[144]  A. Hoffman,et al.  Systems for region selective drug delivery in the gastrointestinal tract: biopharmaceutical considerations , 2008 .

[145]  Susumu Kitagawa,et al.  Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes , 2010 .

[146]  Eugenio Coronado,et al.  Unravelling the chemical design of spin-crossover nanoparticles based on iron(ii)–triazole coordination polymers: towards a control of the spin transition , 2015, Journal of materials chemistry. C.

[147]  M. Dobrovolskaia,et al.  Immunological properties of engineered nanomaterials , 2007, Nature Nanotechnology.

[148]  Samir Mitragotri,et al.  Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[149]  Shuhong Yu,et al.  Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. , 2014, Chemical communications.

[150]  I. Imaz,et al.  Nanoscale metal-organic materials. , 2011, Chemical Society reviews.

[151]  C. Serre,et al.  Cytotoxicity of nanoscaled metal-organic frameworks. , 2014, Journal of materials chemistry. B.

[152]  D. Bradshaw,et al.  Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications. , 2012, Chemical Society reviews.

[153]  B. Lotsch,et al.  Synthetic routes toward MOF nanomorphologies , 2012 .

[154]  Lauren M. Graham,et al.  Experimental considerations on the cytotoxicity of nanoparticles. , 2011, Nanomedicine.

[155]  S. Nie,et al.  Nanotechnology applications in cancer. , 2007, Annual review of biomedical engineering.

[156]  M. Pileni,et al.  Nanosized Particles Made in Colloidal Assemblies , 1997 .

[157]  D. Bradshaw,et al.  Biomineral-inspired growth of metal-organic frameworks in gelatin hydrogel matrices. , 2013, Journal of materials chemistry. B.

[158]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[159]  A. Dehghani,et al.  A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. , 2013, Biosensors & bioelectronics.

[160]  C. Serre,et al.  Colloidal Route for Preparing Optical Thin Films of Nanoporous Metal–Organic Frameworks , 2009 .

[161]  Mark A. Griswold,et al.  Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: a new generation of T1-weighted MRI contrast and small molecule delivery agents , 2010 .

[162]  C. Setty,et al.  Chemical Penetration Enhancers for Transdermal Drug Delivery Systems , 2009 .

[163]  R. Fischer,et al.  Metal-organic framework thin films: from fundamentals to applications. , 2012, Chemical reviews.

[164]  P. Perriat,et al.  Mn(II)-containing coordination nanoparticles as highly efficient T(1) contrast agents for magnetic resonance imaging. , 2014, Chemical communications.

[165]  Joop A. Peters,et al.  Evaluation of [Ln(H2cmp)(H2O)] metal organic framework materials for potential application as magnetic resonance imaging contrast agents. , 2010, Inorganic chemistry.

[166]  C. Serre,et al.  Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. , 2011, Nanomedicine.

[167]  L. Qiu,et al.  Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method , 2009 .

[168]  M. J. Santander-Ortega,et al.  Understanding the colloidal stability of the mesoporous MIL-100(Fe) nanoparticles in physiological media. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[169]  O. Shekhah,et al.  Growth mechanism of metal-organic frameworks: insights into the nucleation by employing a step-by-step route. , 2009, Angewandte Chemie.

[170]  Chia‐Her Lin,et al.  Fast multipoint immobilized MOF bioreactor. , 2014, Chemistry.

[171]  C. Serre,et al.  Small chemical causes drastic structural effects: the case of calcium glutarate , 2011 .

[172]  M. Grinstaff,et al.  Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. , 2012, Chemical reviews.

[173]  Ana E. Platero‐Prats,et al.  Green Microwave Synthesis of MIL‐100(Al, Cr, Fe) Nanoparticles for Thin‐Film Elaboration , 2012 .

[174]  Brian S. Luisi,et al.  Coordination polymer gels: synthesis, structure and mechanical properties of amorphous coordination polymers. , 2007, Chemical communications.

[175]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[176]  Scott E. McNeil,et al.  Handbook of Immunological Properties of Engineered Nanomaterials , 2016 .

[177]  Chun-Chuen Yang,et al.  Novel trypsin-FITC@MOF bioreactor efficiently catalyzes protein digestion. , 2013, Journal of materials chemistry. B.

[178]  Zhigang Xie,et al.  Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. , 2009, Journal of the American Chemical Society.

[179]  C. Wöll,et al.  Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). , 2005, Journal of the American Chemical Society.

[180]  J. Lorenzo,et al.  Carboxyl group (-CO2 H) functionalized coordination polymer nanoparticles as efficient platforms for drug delivery. , 2014, Chemistry.

[181]  C. Gaudin,et al.  A quantitative structure activity relationship approach to probe the influence of the functionalization on the drug encapsulation of porous metal-organic frameworks , 2012 .

[182]  R. Fischer,et al.  Trapping metal-organic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. , 2007, Journal of the American Chemical Society.

[183]  R. Landmann,et al.  Silver Coordination Polymers for Prevention of Implant Infection: Thiol Interaction, Impact on Respiratory Chain Enzymes, and Hydroxyl Radical Induction , 2010, Antimicrobial Agents and Chemotherapy.

[184]  H. Willaime,et al.  Towards an Improved anti‐HIV Activity of NRTI via Metal–Organic Frameworks Nanoparticles , 2013, Advanced healthcare materials.

[185]  Krista S. Walton,et al.  Water stability and adsorption in metal-organic frameworks. , 2014, Chemical reviews.

[186]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[187]  Samir Mitragotri,et al.  Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[188]  M. Pileni Nanocrystals: fabrication, organization and collective properties , 2003 .

[189]  Xiangyang Zhu,et al.  Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. , 2014, Chemical communications.

[190]  Wenbin Lin,et al.  Lipid-coated nanoscale coordination polymers for targeted cisplatin delivery. , 2013, RSC advances.

[191]  Chad A Mirkin,et al.  Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. , 2014, Journal of the American Chemical Society.

[192]  A. U. Daniels,et al.  Silver coordination compounds as light-stable, nano-structured and anti-bacterial coatings for dental implant and restorative materials , 2008 .

[193]  Klaus Huber,et al.  Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering , 2011 .

[194]  Dominique Duchêne,et al.  Cyclodextrins and their pharmaceutical applications. , 2007, International journal of pharmaceutics.

[195]  Ziqi Wang,et al.  A luminescent nanoscale metal-organic framework with controllable morphologies for spore detection. , 2012, Chemical communications.

[196]  Morteza Mahmoudi,et al.  Antibacterial properties of nanoparticles. , 2012, Trends in biotechnology.

[197]  R. Masel,et al.  Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. , 2006, Journal of the American Chemical Society.

[198]  J. Navarro,et al.  Biophysical characterisation, antitumor activity and MOF encapsulation of a half-sandwich ruthenium(ii) mitoxantronato system. , 2014, Journal of materials chemistry. B.

[199]  Mark R. Prausnitz,et al.  Dissolving Polymer Microneedle Patches for Influenza Vaccination , 2010, Nature Medicine.

[200]  Gérard Férey,et al.  Flexible porous metal-organic frameworks for a controlled drug delivery. , 2008, Journal of the American Chemical Society.

[201]  S. Said,et al.  Structural stability of metal organic frameworks in aqueous media – Controlling factors and methods to improve hydrostability and hydrothermal cyclic stability , 2015 .

[202]  Z. Tang,et al.  Multifunctional Nanoparticle@MOF Core–Shell Nanostructures , 2013, Advanced materials.

[203]  O. Zhou,et al.  Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography. , 2012, Journal of materials chemistry.

[204]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[205]  P. Costa,et al.  Ratiometric nanothermometer based on an emissive Ln3+-organic framework. , 2013, ACS nano.

[206]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[207]  Young Kwan Park,et al.  Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. , 2007, Angewandte Chemie.

[208]  J. Lahann,et al.  Fabrication of highly uniform gel coatings by the conversion of surface-anchored metal-organic frameworks. , 2014, Journal of the American Chemical Society.

[209]  A. Lascialfari,et al.  Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity. , 2011, Nanoscale.

[210]  F. Emmerling,et al.  Mechanochemical Synthesis of Metal-Organic Frameworks : A Fast and FacileApproach towardQuantitativeYields andHighSpecific SurfaceAreas , 2010 .

[211]  Anne Pichon,et al.  Solvent-free synthesis of metal complexes. , 2007, Chemical Society reviews.

[212]  A. U. Daniels,et al.  Of Chains and Rings: Synthetic Strategies and Theoretical Investigations for Tuning the Structure of Silver Coordination Compounds and Their Applications , 2010, Materials.

[213]  N. Nagahara,et al.  Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. , 2009, Journal of biochemistry.

[214]  Wei‐Yin Sun,et al.  Facile fabrication and adsorption property of a nano/microporous coordination polymer with controllable size and morphology. , 2012, Chemical communications.

[215]  J. Navarro,et al.  Study of the incorporation and release of the non-conventional half-sandwich ruthenium(II) metallodrug RAPTA-C on a robust MOF. , 2011, Chemical communications.

[216]  Bin Chen,et al.  Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores , 2001, Science.

[217]  C. Huang,et al.  A new type of pH-responsive coordination polymer sphere as a vehicle for targeted anticancer drug delivery and sustained release. , 2013, Journal of materials chemistry. B.

[218]  Wenbin Lin,et al.  Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. , 2007, Journal of the American Chemical Society.

[219]  Wenbin Lin,et al.  Lipid-Coated Nanoscale Coordination Polymers for Targeted Delivery of Antifolates to Cancer Cells. , 2012, Chemical science.

[220]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[221]  Gérard Férey,et al.  A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. , 2004, Angewandte Chemie.