One-Step Crystallization of Gahnite Glass-Ceramics in a Wide Thermal Gradient

The glass crystallization regime plays a crucial role in the fabrication of glass ceramics: it affects both phase composition and microstructure, and thus the properties of the final product. In the search for new glass-ceramic materials, the development of a proper heat-treatment schedule involves the utilization of numerous glass samples that need to be thermally treated and then investigated to determine the values of the target characteristics. In this study, we evaluated the effect of crystallization temperature on the glass structure, phase composition, and hardness of glass ceramics in the ZnO-MgO-Al2O3-SiO2 system containing TiO2 and ZrO2 as nucleators. To maximize the number of heat treatments, we performed polythermal crystallization of the glass in a wide temperature range with the help of a gradient furnace. Using X-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we showed the precipitation of gahnite nanocrystals as the main phase in the bulk of a single glass sample and observed a gradual change in its microstructure, transparency, and hardness. The dependence of Vickers hardness values on heat treatment temperature was found to follow a non-linear trend, revealing the optimal thermal range for glass crystallization.

[1]  Jinhao Zhang,et al.  Transparent MgO-Al2O3-SiO2 glass-ceramics prepared with ZrO2 and SnO2 as nucleating agents , 2022, Journal of Non-Crystalline Solids.

[2]  Yadong Lu,et al.  Microstructure and ion-exchange properties of transparent glass-ceramics containing Zn2TiO4/α-Zn2SiO4 nanocrystals , 2022, Journal of the European Ceramic Society.

[3]  V. Sigaev,et al.  Effect of Gold Nanoparticles on the Crystallization and Optical Properties of Glass in ZnO-MgO-Al2O3-SiO2 System , 2022, Crystals.

[4]  Z. Wang,et al.  Structure/property nonlinear variation induced by gamma ray irradiation of boroaluminosilicate transparent glass ceramic containing gahnite nanocrystallite , 2022, Journal of Non-Crystalline Solids.

[5]  Edgar Dutra Zanotto,et al.  Fracture toughness and hardness of transparent MgO–Al2O3–SiO2 glass-ceramics , 2021, Ceramics International.

[6]  R. Youngman,et al.  Nanoscale microstructure and chemistry of transparent gahnite glass-ceramics revealed by atom probe tomography , 2021 .

[7]  V. Sigaev,et al.  Multicomponent Optical Glasses with High Refractive Index , 2021, Glass and Ceramics.

[8]  V. Sigaev,et al.  Effect of Sitallization Conditions on the Hardness of Transparent Sitalls in the System ZnO–MgO–Al2O3–SiO2 , 2021, Glass and Ceramics.

[9]  V. Sigaev,et al.  Microstructure and optical properties of tracks with precipitated silver nanoparticles and clusters inscribed by the laser irradiation in phosphate glass , 2021 .

[10]  M. Albrecht,et al.  ZnO-Al2O3-SiO2 glass ceramics: Influence of composition on crystal phases, crystallite size and appearance , 2020 .

[11]  A. Lipatiev,et al.  Glass: Home of the Periodic Table , 2020, Frontiers in Chemistry.

[12]  J. Ferreira,et al.  Manganese induced ZrSiO4 crystallization from ZrO2SiO2 binary oxide system , 2019, Ceramics International.

[13]  Edgar Dutra Zanotto,et al.  Transparent glass–ceramics for ballistic protection: materials and challenges , 2019, Journal of Materials Research and Technology.

[14]  Mathieu Allix,et al.  Updated definition of glass-ceramics , 2018, Journal of Non-Crystalline Solids.

[15]  Yuanzheng Yue,et al.  Transparent glass-ceramics functionalized by dispersed crystals , 2018, Progress in Materials Science.

[16]  Alexander V. Baranov,et al.  Synthesis, characterization and absorption saturation of Co:ZnAl2O4 (gahnite) transparent ceramic and glass-ceramics: A comparative study , 2017 .

[17]  A. S. Larkin,et al.  Direct Laser Writing of LaBGeO5 Crystal-in-Glass Waveguide Enabling Frequency Conversion , 2017 .

[18]  Edgar Dutra Zanotto,et al.  Crystallization, mechanical, and optical properties of transparent, nanocrystalline gahnite glass-ceramics , 2017 .

[19]  Takayuki Komatsu,et al.  Design and control of crystallization in oxide glasses , 2015 .

[20]  V. Shiryaev,et al.  Preparation and investigation of glasses in the GeS2–GeI4 system , 2015 .

[21]  L. Cormier Nucleation in Glasses – New Experimental Findings and Recent Theories☆ , 2014 .

[22]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[23]  A. Baranov,et al.  Influence of CoO addition on phase separation and crystallization of glasses of the ZnO-Al2O3-SiO2-TiO2 system , 2011 .

[24]  Alexander M. Malyarevich,et al.  Optical applications of glass-ceramics , 2010 .

[25]  Akihiko Sakamoto,et al.  Glass–Ceramics: Engineering Principles and Applications , 2010 .

[26]  C. Rüssel,et al.  Formation of nano-crystalline quartz crystals from ZnO/MgO/Al2O3/TiO2/ZrO2/SiO2 glasses , 2010 .

[27]  K. Kakegawa,et al.  Orientated crystallization of fresnoite glass-ceramics by using a thermal gradient , 2006 .

[28]  Hartmut Schneider,et al.  Structure of SiO2–Al2O3 glasses: Combined X-ray diffraction, IR and Raman studies , 2005 .

[29]  A. Zhilin,et al.  Small-angle X-ray scattering and low-frequency Raman scattering study of liquid phase separation and crystallization in titania-containing glasses of the ZnO–Al2O3–SiO2 System , 2005 .

[30]  Linda R. Pinckney,et al.  Nanophase glass-ceramics , 2004 .

[31]  V. Sigaev,et al.  Glass ceramic textures based on new ferroelectric complex oxides , 1999 .

[32]  A. Ignat’ev,et al.  Crystallizability of optical glasses and their melts , 1995 .

[33]  S. J. Kim,et al.  Practical limits on up-gradient crystallization , 1995 .

[34]  S. Sharma,et al.  Lattice dynamics and Raman spectroscopy of protoenstatite Mg2Si2O6 , 1994 .

[35]  R. Newnham,et al.  Pyroelectric glass‐ceramics , 1980 .

[36]  P. W. Mcmillan,et al.  Internal stress dependence of the hardness of crystallized glasses , 1979 .

[37]  J. Langford,et al.  Scherrer after sixty years: a survey and some new results in the determination of crystallite size , 1978 .