MODELING AND UPDATING OF CABLE-STAYED BRIDGES

[1]  D. Giraldo,et al.  Modal Identification through Ambient Vibration: Comparative Study , 2009 .

[2]  A. Benveniste,et al.  Input/output versus output-only data processing for structural identification—Application to in-flight data analysis , 2006 .

[3]  Mehmet Çelebi,et al.  Real-Time Seismic Monitoring of the New Cape Girardeau Bridge and Preliminary Analyses of Recorded Data: An Overview , 2006 .

[4]  Shirley J. Dyke,et al.  Application of ARMAV for modal identification of the Emerson Bridge , 2006 .

[5]  P. Andersen,et al.  Understanding Stochastic Subspace Identification , 2006 .

[6]  X. Fang,et al.  Structural damage detection using neural network with learning rate improvement , 2005 .

[7]  Tohru Katayama,et al.  Subspace Methods for System Identification , 2005 .

[8]  Wei-Xin Ren,et al.  Structural Finite Element Model Updating Using Ambient Vibration Test Results , 2005 .

[9]  Wei-Xin Ren,et al.  Baseline finite element modeling of a large span cable-stayed bridge through field ambient vibration tests , 2005 .

[10]  Abhinav Gupta,et al.  Genetic Algorithm-Based Decision Support for Optimizing Seismic Response of Piping Systems , 2005 .

[11]  Wei-Xin Ren,et al.  Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge , 2005 .

[12]  Emily M. Zechman,et al.  An evolutionary algorithm to generate alternatives (EAGA) for engineering optimization problems , 2004 .

[13]  Masanobu Shinozuka,et al.  Geometrically Nonlinear Buffeting Response of a Cable-Stayed Bridge , 2004 .

[14]  Kuei-Chung Chang,et al.  Lessons Learned from the Damaged Chi-Lu Cable-Stayed Bridge , 2004 .

[15]  Erik A. Johnson,et al.  NATURAL EXCITATION TECHNIQUE AND EIGENSYSTEM REALIZATION ALGORITHM FOR PHASE I OF THE IASC-ASCE BENCHMARK PROBLEM: SIMULATED DATA , 2004 .

[16]  James L. Beck,et al.  Two-Stage Structural Health Monitoring Approach for Phase I Benchmark Studies , 2004 .

[17]  Lambros S. Katafygiotis,et al.  Application of a Statistical Model Updating Approach on Phase I of the IASC-ASCE Structural Health Monitoring Benchmark Study , 2004 .

[18]  Yu Lei,et al.  Hilbert-Huang Based Approach for Structural Damage Detection , 2004 .

[19]  Shirley J. Dyke,et al.  PHASE I BENCHMARK CONTROL PROBLEM FOR SEISMIC RESPONSE OF CABLE-STAYED BRIDGES , 2003 .

[20]  Carlos E. Ventura,et al.  Why Output Only Modal Analysis is a Desirable Tool for a Wide Range of Practical Applications , 2003 .

[21]  Randall J. Allemang,et al.  THE MODAL ASSURANCE CRITERION–TWENTY YEARS OF USE AND ABUSE , 2003 .

[22]  Maurice Goursat,et al.  Output-Only Subspace-Based Structural Identification: From Theory to Industrial Testing Practice , 2001 .

[23]  S. Ranji Ranjithan,et al.  GENETIC ALGORITHM APPROACHES FOR ADDRESSING UNMODELED OBJECTIVES IN OPTIMIZATION PROBLEMS , 2001 .

[24]  Mehmet Imregun,et al.  FREQUENCY–DOMAIN CRITERIA FOR CORRELATING AND UPDATING DYNAMIC FINITE ELEMENT MODELS , 2001 .

[25]  Yl L. Xu,et al.  Triple-girder model for modal analysis of cable-stayed bridges with warping effect , 2000 .

[26]  Chih-Chen Chang,et al.  Finite element model updating for structures with parametric constraints , 2000 .

[27]  Iraj Zandi,et al.  A genetic algorithm approach to policy design for consequence minimization , 2000, Eur. J. Oper. Res..

[28]  David J. Ewins,et al.  Adjustment or updating of models , 2000 .

[29]  James M. W. Brownjohn,et al.  Dynamic Assessment of Curved Cable-Stayed Bridge by Model Updating , 2000 .

[30]  P.K.K. Lee,et al.  Determination of initial cable forces in prestressed concrete cable-stayed bridges for given design deck profiles using the force equilibrium method , 2000 .

[31]  James M. W. Brownjohn,et al.  Dynamic performance of a curved cable-stayed bridge , 1999 .

[32]  Raid Karoumi,et al.  Some modeling aspects in the nonlinear finite element analysis of cable supported bridges , 1999 .

[33]  P. Andersen,et al.  Estimation of Modal Parameters and their Uncertainties , 1999 .

[34]  Gunnar Tibert,et al.  Numerical analyses of cable roof structures , 1999 .

[35]  André Preumont,et al.  Active damping and flutter control of cable-stayed bridges , 1998 .

[36]  Poul Henning Kirkegaard,et al.  Identification of Civil Engineering Structures using Vector ARMA Models , 1998 .

[37]  John W. Baugh,et al.  A MATHEMATICAL PROGRAMMING APPROACH FOR GENERATING ALTERNATIVES IN DISCRETE STRUCTURAL OPTIMIZATION , 1997 .

[38]  Pao-Hsii Wang,et al.  Parametric studies on cable-stayed bridges , 1996 .

[39]  Ward Heylen,et al.  FRAC: a consistent way of comparing frequency response functions , 1996 .

[40]  Mamdouh El-Badry,et al.  Influence of cable vibration on seismic response of cable-stayed bridges , 1995 .

[41]  K. Bathe Finite Element Procedures , 1995 .

[42]  Anil K. Chopra,et al.  Dynamics of Structures: Theory and Applications to Earthquake Engineering , 1995 .

[43]  Pao-Hsii Wang,et al.  Initial shape of cable-stayed bridges , 1993 .

[44]  Worsak Kanok-Nukulchai,et al.  NONLINEAR MODELLING OF CABLE-STAYED BRIDGES , 1993 .

[45]  James G. Uber,et al.  Use of Mathematical Programming Methods for Complex Systems , 1992 .

[46]  Magdi A. Khalifa,et al.  Importance of Cable Vibration in Dynamics of Cable-Stayed Bridges , 1991 .

[47]  A. M. Abdel-Ghaffar,et al.  3-D NONLINEAR SEISMIC BEHAVIOR OF CABLE-STAYED BRIDGES , 1991 .

[48]  John C. Wilson,et al.  Modelling of a cable‐stayed bridge for dynamic analysis , 1991 .

[49]  John M. Flach,et al.  MGA: a decision support system for complex, incompletely defined problems , 1990, IEEE Trans. Syst. Man Cybern..

[50]  William L. Sprouse,et al.  Modeling to Generate Alternatives: A Shawnee National Forest example , 1990 .

[51]  Murty K. S. Madugula,et al.  Stability Functions for Three‐Dimensional Beam‐Columns , 1989 .

[52]  G. Mendoza,et al.  Adapting modeling to generate alternatives (MGA) techniques to forest level planning , 1988 .

[53]  J. Juang,et al.  Effects of Noise on Modal Parameters Identified by the Eigensystem Realization Algorithm , 1986 .

[54]  Yeong-Bin Yang,et al.  Stiffness Matrix for Geometric Nonlinear Analysis , 1986 .

[55]  Steven C. Chapra,et al.  Numerical Methods for Engineers , 1986 .

[56]  H. A. A. Buchholdt,et al.  An Introduction to Cable Roof Structures , 1985 .

[57]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[58]  E. D. Brill,et al.  Modeling to Generate Alternatives: The HSJ Approach and an Illustration Using a Problem in Land Use Planning , 1982 .

[59]  Philip E. Gill,et al.  Practical optimization , 1981 .

[60]  H. B. Jayaraman,et al.  A curved element for the analysis of cable structures , 1981 .

[61]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[62]  A. M. Goulois,et al.  Analysis of cable structures , 1979 .

[63]  H. Ozdemir,et al.  A finite element approach for cable problems , 1979 .

[64]  A. Sage,et al.  An introduction to probability and stochastic processes , 1973 .

[65]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[66]  S. Saafan,et al.  Theoretical Analysis of Suspension Roofs , 1970 .

[67]  F. W. Kellaway,et al.  Advanced Engineering Mathematics , 1969, The Mathematical Gazette.

[68]  Terence O'Brien,et al.  General Solution of Suspended Cable Problems , 1967 .

[69]  W. Terence O'Brien,et al.  Cable Movements Under Two-Dimensional Loads , 1964 .