Mitral Valve Quantification at a Glance - Flattening Patient-Specific Valve Geometry

Malfunctioning mitral valves can be restored through complex surgical interventions, which greatly benefit from intensive planning and pre-operative analysis from echocardiography. Visualization techniques provide a possibility to enhance such preparation processes and can also facilitate post-operative evaluation. In this work we extend current research in this field, building upon patient-specific mitral valve segmentations that are represented as triangulated 3D surface models. We propose a 2D-map construction of these models, which can provide physicians with a view of the whole surface at once. This allows assessment of the valve’s area and shape without the need for different viewing angles and scene interaction. Clinically highly relevant pathology indicators, such as coaptation zone areas or prolapsed regions are color coded on these maps, making it easier to fully comprehend the underlying pathology. Quality and effectiveness of the proposed methods were evaluated through a user survey conducted with domain experts.We assessed pathology detection accuracy using 3D valve models in comparison to the developed method. Classification accuracy increased by 2.8% across all tested valves and by 10.4% for prolapsed valves.