Complexity Classification in Infinite-Domain Constraint Satisfaction

A constraint satisfaction problem (CSP) is a computational problem where the input consists of a finite set of variables and a finite set of constraints, and where the task is to decide whether there exists a satisfying assignment of values to the variables. Depending on the type of constraints that we allow in the input, a CSP might be tractable, or computationally hard. In recent years, general criteria have been discovered that imply that a CSP is polynomial-time tractable, or that it is NP-hard. Finite-domain CSPs have become a major common research focus of graph theory, artificial intelligence, and finite model theory. It turned out that the key questions for complexity classification of CSPs are closely linked to central questions in universal algebra. This thesis studies CSPs where the variables can take values from an infinite domain. This generalization enhances dramatically the range of computational problems that can be modeled as a CSP. Many problems from areas that have so far seen no interaction with constraint satisfaction theory can be formulated using infinite domains, e.g. problems from temporal and spatial reasoning, phylogenetic reconstruction, and operations research. It turns out that the universal-algebraic approach can also be applied to study large classes of infinite-domain CSPs, yielding elegant complexity classification results. A new tool in this thesis that becomes relevant particularly for infinite domains is Ramsey theory. We demonstrate the feasibility of our approach with two complete complexity classification results: one on CSPs in temporal reasoning, the other on a generalization of Schaefer's theorem for propositional logic to logic over graphs. We also study the limits of complexity classification, and present classes of computational problems provably do not exhibit a complexity dichotomy into hard and easy problems.

[1]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[2]  B. Poizat A Course in Model Theory , 2000 .

[3]  Walter Guttmann,et al.  Variations on an Ordering Theme with Constraints , 2006, IFIP TCS.

[4]  Yuri Matiyasevich,et al.  Hilbert’s tenth problem , 2019, 100 Years of Math Milestones.

[5]  Florent R. Madelaine Constraint satisfaction problems and related logic , 2003 .

[6]  L. Heindorf The maximal clones on countable sets that include all permutations , 2002 .

[7]  Libor Barto,et al.  Constraint Satisfaction Problems of Bounded Width , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[8]  Ágnes Szendrei,et al.  Clones in universal algebra , 1986 .

[9]  M. Pinsker Maximal clones on uncountable sets that include all permutations , 2004, math/0401103.

[10]  Gabriel M. Kuper,et al.  Constraint Query Languages , 1995, J. Comput. Syst. Sci..

[11]  Peter Jeavons,et al.  Reasoning about temporal relations: The tractable subalgebras of Allen's interval algebra , 2003, JACM.

[12]  Zvi Galil,et al.  Cyclic Ordering is NP-Complete , 1977, Theor. Comput. Sci..

[13]  Jean-Louis Lassez,et al.  Independence of Negative Constraints , 1989, TAPSOFT, Vol.1.

[14]  Markus Junker,et al.  The 116 reducts of (Q, <, a) , 2008, J. Symb. Log..

[15]  Manuel Bodirsky,et al.  The complexity of temporal constraint satisfaction problems , 2008, STOC.

[16]  Hubie Chen A rendezvous of logic, complexity, and algebra , 2006, SIGA.

[17]  Simon Thomas,et al.  Reducts of Random Hypergraphs , 1996, Ann. Pure Appl. Log..

[18]  I. G. Rosenberg,et al.  Finite Clones Containing All Permutations , 1994, Canadian Journal of Mathematics.

[19]  Andrei A. Bulatov H-Coloring dichotomy revisited , 2005, Theor. Comput. Sci..

[20]  Martin Ziegler,et al.  Quasi finitely axiomatizable totally categorical theories , 1986, Ann. Pure Appl. Log..

[21]  P. Jeavons Algebraic structures in combinatorial problems , 2001 .

[22]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[23]  Diana Piguet,et al.  Finite trees are Ramsey under topological embeddings , 2010, 1002.1557.

[24]  Alexander S. Kechris,et al.  The Descriptive Set Theory of Polish Group Actions: DESCRIPTIVE SET THEORY , 1996 .

[25]  Libor Barto,et al.  Absorbing Subalgebras, Cyclic Terms, and the Constraint Satisfaction Problem , 2012, Log. Methods Comput. Sci..

[26]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[27]  Manolis Koubarakis,et al.  Tractable disjunctions of linear constraints: basic results and applications to temporal reasoning , 2001, Theor. Comput. Sci..

[28]  Markus Junker,et al.  $${\aleph_{0}}$$ -categorical structures: endomorphisms and interpretations , 2009 .

[29]  Omer Reingold,et al.  Undirected connectivity in log-space , 2008, JACM.

[30]  Jaroslav Nesetril,et al.  Ramsey Classes and Homogeneous Structures , 2005, Combinatorics, Probability and Computing.

[31]  Peter Jeavons,et al.  Building tractable disjunctive constraints , 2000, J. ACM.

[32]  Dániel Marx Tractable Structures for Constraint Satisfaction with Truth Tables , 2009, STACS.

[33]  Matemáticas Theory of Relations , 2013 .

[34]  Deirdre Haskell,et al.  Cell Decompositions of C-Minimal Structures , 1994, Ann. Pure Appl. Log..

[35]  Barnaby Martin,et al.  On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction , 2010, LICS.

[36]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[37]  Libor Barto,et al.  The Dichotomy for Conservative Constraint Satisfaction Problems Revisited , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[38]  Walter Deuber A generalization of Ramsey's theorem for regular trees , 1975 .

[39]  Manuel Bodirsky,et al.  The Complexity of Equality Constraint Languages , 2006, CSR.

[40]  Albert Atserias,et al.  On digraph coloring problems and treewidth duality , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[41]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[42]  Goetz Schwandtner Datalog on infinite structures , 2008 .

[43]  Libor Barto,et al.  New Conditions for Taylor Varieties and CSP , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[44]  Peter M. Neumann,et al.  Relations related to betweenness : their structure and automorphisms , 1998 .

[45]  Jaroslav Nesetril,et al.  Constraint Satisfaction with Countable Homogeneous Templates , 2003, J. Log. Comput..

[46]  Robin Hirsch,et al.  Expressive Power and Complexity in Algebraic Logic , 1997, J. Log. Comput..

[47]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[48]  Jean-Louis Lassez,et al.  A constraint sequent calculus , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[49]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[50]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[51]  The Minimal Clones above the Permutations , 2005, math/0512367.

[52]  Tom Cornell On Determining the Consistency of Partial Descriptions of Trees , 1994, ACL.

[53]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[54]  V. Pestov,et al.  Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups , 2003 .

[55]  J. William Helton,et al.  Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets , 2007, SIAM J. Optim..

[56]  R. McKenzie,et al.  Varieties with few subalgebras of powers , 2009 .

[57]  Peter Jonsson,et al.  Computational Complexity of Temporal Constraint Problems , 2005, Handbook of Temporal Reasoning in Artificial Intelligence.

[58]  Manuel Bodirsky,et al.  Quantified Equality Constraints , 2007, LICS.

[59]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[60]  Itay Ben-Yaacov,et al.  Positive Model Theory and Compact Abstract Theories , 2003, J. Math. Log..

[61]  Pascal Tesson,et al.  Symmetric Datalog and Constraint Satisfaction Problems in Logspace , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[62]  Pascal Tesson,et al.  Universal algebra and hardness results for constraint satisfaction problems , 2007, Theor. Comput. Sci..

[63]  Keith R. Milliken,et al.  A Ramsey Theorem for Trees , 1979, J. Comb. Theory, Ser. A.

[64]  Simon Thomas,et al.  Reducts of the random graph , 1991, Journal of Symbolic Logic.

[65]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[66]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[67]  Peter Jeavons,et al.  The complexity of constraint satisfaction games and QCSP , 2009, Inf. Comput..

[68]  Bruce L. Bauslaugh Core-like properties of infinite graphs and structures , 1995, Discret. Math..

[69]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[70]  Bruce L. Bauslaugh,et al.  The Complexity of Infinite H-Coloring , 1994, J. Comb. Theory, Ser. B.

[71]  Manuel Bodirsky,et al.  Datalog and constraint satisfaction with infinite templates , 2006, J. Comput. Syst. Sci..

[72]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[73]  Vojtech Rödl,et al.  The partite construction and ramsey set systems , 1989, Discret. Math..

[74]  W. Taylor Varieties Obeying Homotopy Laws , 1977, Canadian Journal of Mathematics.

[75]  P. Cameron Transitivity of permutation groups on unordered sets , 1976 .

[76]  S. Koppelberg,et al.  Some classes of projective Boolean algebras , 1973 .

[77]  Libor Barto,et al.  The CSP Dichotomy Holds for Digraphs with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell) , 2008, SIAM J. Comput..

[78]  Ivo Düntsch,et al.  Relation Algebras and their Application in Temporal and Spatial Reasoning , 2005, Artificial Intelligence Review.

[79]  Ross Willard Testing Expressibility Is Hard , 2010, CP.

[80]  Manuel Bodirsky,et al.  A fast algorithm and datalog inexpressibility for temporal reasoning , 2010, TOCL.

[81]  Peter B. Ladkin,et al.  On binary constraint problems , 1994, JACM.

[82]  H. Keisler Reduced products and Horn classes , 1965 .

[83]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[84]  Geoffrey Exoo,et al.  A lower bound for r(5, 5) , 1989, J. Graph Theory.

[85]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[86]  T. Tsankov Unitary Representations of Oligomorphic Groups , 2011, 1101.2194.

[87]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[88]  Su Gao Invariant Descriptive Set Theory , 2008 .

[89]  M. Steel The complexity of reconstructing trees from qualitative characters and subtrees , 1992 .

[90]  Michael Pinsker,et al.  Reducts of Ramsey structures , 2011, AMS-ASL Joint Special Session.

[91]  Manuel Bodirsky,et al.  Determining the consistency of partial tree descriptions , 2007, Artif. Intell..

[92]  Peter Jonsson,et al.  Horn versus full first-order: Complexity dichotomies in algebraic constraint satisfaction , 2010, J. Log. Comput..

[93]  Martin Odersky,et al.  Negative Boolean Constraints , 1996, Theor. Comput. Sci..

[94]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[95]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[96]  Hans Kleine Büning,et al.  On the Computational Complexity of Quantified Horn Clauses , 1987, CSL.

[97]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[98]  Manuel Bodirsky Cores of Countably Categorical Structures , 2007, Log. Methods Comput. Sci..

[99]  R. Lyndon THE REPRESENTATION OF RELATIONAL ALGEBRAS , 1950 .

[100]  Manuel Bodirsky,et al.  Pure Dominance Constraints , 2002, STACS.

[101]  E. Granirer Extremely amenable semigroups , 1966 .

[102]  Martin C. Cooper,et al.  Tractable Constraints on Ordered Domains , 1995, Artif. Intell..

[103]  Manuel Bodirsky,et al.  Constraint satisfaction with infinite domains , 2004 .

[104]  Iain A. Stewart,et al.  Constraint Satisfaction, Logic and Forbidden Patterns , 2007, SIAM J. Comput..

[105]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[106]  Ivo Düntsch,et al.  A relation - algebraic approach to the region connection calculus , 2001, Theor. Comput. Sci..

[107]  Manuel Bodirsky,et al.  Non-dichotomies in Constraint Satisfaction Complexity , 2008, ICALP.

[108]  Gábor Kun,et al.  Constraints, MMSNP and expander relational structures , 2007, Combinatorica.

[109]  Michael Pinsker,et al.  Decidability of Definability , 2013, The Journal of Symbolic Logic.

[110]  Andrei A. Bulatov,et al.  A Simple Algorithm for Mal'tsev Constraints , 2006, SIAM J. Comput..

[111]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[112]  Anuj Dawar,et al.  Affine systems of equations and counting infinitary logic , 2009 .

[113]  Heribert Vollmer,et al.  Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar] , 2008, Complexity of Constraints.

[114]  Pawel M. Idziak,et al.  Tractability and Learnability Arising from Algebras with Few Subpowers , 2010, SIAM J. Comput..

[115]  Neil Immerman,et al.  The complexity of satisfiability problems: Refining Schaefer's theorem , 2009, J. Comput. Syst. Sci..

[116]  Gérard Ligozat,et al.  What Is a Qualitative Calculus? A General Framework , 2004, PRICAI.

[117]  M. Maróti,et al.  Existence theorems for weakly symmetric operations , 2008 .

[118]  Prasad Raghavendra,et al.  Beating the Random Ordering Is Hard: Every Ordering CSP Is Approximation Resistant , 2011, SIAM J. Comput..

[119]  Motakuri V. Ramana,et al.  An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..

[120]  Benoît Larose,et al.  Omitting Types, Bounded Width and the Ability to Count , 2009, Int. J. Algebra Comput..

[121]  Yuri Gurevich,et al.  Toward logic tailored for computational complexity , 1984 .

[122]  Peter Jonsson,et al.  Point algebras for temporal reasoning: Algorithms and complexity , 2003, Artif. Intell..

[123]  S. Ulam,et al.  Über die Permutationsgruppe der natürlichen Zahlenfolge , 1933 .

[124]  Rolf H. Möhring,et al.  Scheduling with AND/OR Precedence Constraints , 2004, SIAM J. Comput..

[125]  Peter Jonsson,et al.  Disjunctions, independence, refinements , 2002, Artif. Intell..

[126]  Harold Simmons Large and Small Existentially Closed Structures , 1976, J. Symb. Log..

[127]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[128]  Florent R. Madelaine On the Containment of Forbidden Patterns Problems , 2010, CP.

[129]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[130]  R. Graham,et al.  Ramsey’s theorem for $n$-parameter sets , 1971 .

[131]  Hans K. Buning,et al.  Propositional Logic: Deduction and Algorithms , 1999 .

[132]  D. Saracino Model companions for ℵ₀-categorical theories , 1973 .

[133]  Leo Harrington,et al.  Models Without Indiscernibles , 1978, J. Symb. Log..

[134]  Phokion G. Kolaitis,et al.  The decision problem for the probabilities of higher-order properties , 1987, STOC.

[135]  Víctor Dalmau,et al.  Linear datalog and bounded path duality of relational structures , 2005, Log. Methods Comput. Sci..

[136]  M. Siggers A strong Mal’cev condition for locally finite varieties omitting the unary type , 2010 .

[137]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[138]  Peter Jonsson,et al.  Twenty-One Large Tractable Subclasses of Allen's Algebra , 1997, Artif. Intell..

[139]  Bruce L. Bauslaugh Cores and Compactness of Infinite Directed Graphs , 1996, J. Comb. Theory, Ser. B.

[140]  Iain A. Stewart,et al.  Some problems not definable using structure homomorphisms , 2003, Ars Comb..

[141]  Jaroslav Opatrny,et al.  Total Ordering Problem , 1979, SIAM J. Comput..

[142]  Georg Cantor Über unendliche, lineare Punktmannigfaltigkeiten , 1984 .

[143]  Michael Pinsker,et al.  Minimal functions on the random graph , 2010 .

[144]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[145]  Brandon Bennett,et al.  Spatial Reasoning with Propositional Logics , 1994, KR.

[146]  Markus Junker,et al.  The 116 reducts of (ℚ, <, a) , 2008, Journal of Symbolic Logic.

[147]  Enric Rodríguez-Carbonell,et al.  The Max-Atom Problem and Its Relevance , 2008, LPAR.

[148]  Tomás Feder,et al.  Homomorphism closed vs. existential positive , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[149]  Manuel Bodirsky Constraint Satisfaction Problems with Infinite Templates , 2008, Complexity of Constraints.

[150]  Claude Tardif,et al.  A Characterisation of First-Order Constraint Satisfaction Problems , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[151]  Hubie Chen,et al.  (Smart) Look-Ahead Arc Consistency and the Pursuit of CSP Tractability , 2004, CP.

[152]  R. Fraïssé Sur l'extension aux relations de quelques propriétés des ordres , 1954 .

[153]  Jaroslav Nesetril,et al.  The core of a graph , 1992, Discret. Math..

[154]  Michael Pinsker,et al.  PROJECTIVE CLONE HOMOMORPHISMS , 2014, The Journal of Symbolic Logic.

[155]  Manuel Bodirsky,et al.  Oligomorphic clones , 2007 .

[156]  Hubie Chen,et al.  Constraint satisfaction with succinctly specified relations , 2010, J. Comput. Syst. Sci..

[157]  Jörg Flum,et al.  Mathematical logic , 1985, Undergraduate texts in mathematics.

[158]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[159]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[160]  J. Covington Homogenizable relational structures , 1990 .

[161]  Benjamin Rossman,et al.  Homomorphism preservation theorems , 2008, JACM.

[162]  Richard Statman,et al.  Logic for computer scientists , 1989 .

[163]  Manfred Droste,et al.  Structure of partially ordered sets with transitive automorphism groups , 1985 .

[164]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..

[165]  Christer Bäckström,et al.  A Unifying Approach to Temporal Constraint Reasoning , 1998, Artif. Intell..

[166]  Manuel Bodirsky,et al.  Maximal Infinite-Valued Constraint Languages , 2007, ICALP.

[167]  Peter Jonsson,et al.  A Complete Classification of Tractability in RCC-5 , 1997, J. Artif. Intell. Res..

[168]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[169]  Vojtech Rödl,et al.  Ramsey Classes of Set Systems , 1983, J. Comb. Theory, Ser. A.

[170]  Richard Kaye,et al.  Automorphisms of first-order structures , 1994 .

[171]  B. Larose,et al.  Bounded width problems and algebras , 2007 .

[172]  Peter Jonsson,et al.  Essential Convexity and Complexity of Semi-Algebraic Constraints , 2012, Log. Methods Comput. Sci..

[173]  Andreas Goerdt On Random Ordering Constraints , 2009, CSR.

[174]  S. Shelah,et al.  Universal Graphs with Forbidden Subgraphs and Algebraic Closure , 1998, math/9809202.

[175]  Dugald Macpherson,et al.  A survey of homogeneous structures , 2011, Discret. Math..

[176]  Alfred V. Aho,et al.  Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions , 1981, SIAM J. Comput..

[177]  Barnaby Martin,et al.  Distance Constraint Satisfaction Problems , 2010, MFCS.

[178]  Michael Pinsker,et al.  The reducts of equality up to primitive positive interdefinability , 2010, J. Symb. Log..

[179]  D. Marker Model theory : an introduction , 2002 .

[180]  L. A. Kaluzhnin,et al.  Galois theory for Post algebras. II , 1969 .

[181]  Martin Grohe,et al.  The Quest for a Logic Capturing PTIME , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[182]  Phokion G. Kolaitis,et al.  Conjunctive-Query Containment and Constraint Satisfaction , 2000, J. Comput. Syst. Sci..

[183]  M. Pinsker THE NUMBER OF UNARY CLONES CONTAINING THE PERMUTATIONS ON AN INFINITE SET , 2004, math/0410406.

[184]  Gustav Nordh,et al.  Integer programming with 2-variable equations and 1-variable inequalities , 2009, Inf. Process. Lett..

[185]  Roland Fraïssé Theory of relations , 1986 .

[186]  Peter Jonsson,et al.  Reasoning About Set Constraints Applied to Tractable Inference in Intuitionistic Logic , 1998, J. Log. Comput..