An efficient parallel algorithm that finds independent sets of guaranteed size

Every graph with n vertices and m edges has an independent set containing at least $n^2 / (2m + n)$ vertices. This paper presents a parallel algorithm that finds an independent set of this size and...

[1]  Robert E. Tarjan,et al.  An Efficient Parallel Biconnectivity Algorithm , 2011, SIAM J. Comput..

[2]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[3]  P. Turán On the theory of graphs , 1954 .

[4]  Uzi Vishkin,et al.  An O(log n) Parallel Connectivity Algorithm , 1982, J. Algorithms.

[5]  Alok Aggarwal,et al.  A random NC algorithm for depth first search , 1987, Comb..

[6]  Mark K. Goldberg,et al.  A new parallel algorithm for the maximal independent set problem , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[7]  Michael Luby Removing randomness in parallel computation without a processor penalty , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[8]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[9]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[10]  Mark K. Goldberg,et al.  Constructing a Maximal Independent Set in Parallel , 1989, SIAM J. Discret. Math..

[11]  Richard P. Brent,et al.  The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.

[12]  Richard Cole,et al.  Parallel merge sort , 1988, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).