Potential performance of indium-nitride-based devices

We study how electrons, initially in thermal equilibrium, drift under the action of an applied electric field within bulk wurtzite indium nitride. We find that the optimal cutoff frequency for an ideal indium-nitride-based device ranges from around 10GHz when the device thickness is set to 10μm to about 2.5THz when the device thickness is set to 0.1μm. We thus suggest that indium nitride offers great promise for future high-speed device applications.

[1]  K. Seeger,et al.  Semiconductor Physics: An Introduction , 1973 .

[2]  Michael S. Shur,et al.  Transient electron transport in wurtzite GaN, InN, and AlN , 1999 .

[3]  K. Brennan,et al.  Ensemble Monte Carlo study of electron transport in wurtzite InN , 1999 .

[4]  P. Lugli,et al.  Degeneracy in the ensemble Monte Carlo method for high-field transport in semiconductors , 1985, IEEE Transactions on Electron Devices.

[5]  M. Shur,et al.  Polar optical phonon instability and intervalley transfer in III-V semiconductors , 2001 .

[6]  Michael S. Shur,et al.  Comparison of high field electron transport in GaN and GaAs , 1997 .

[7]  Michael S. Shur,et al.  Steady-state and transient electron transport within bulk wurtzite indium nitride: An updated semiclassical three-valley Monte Carlo simulation analysis , 2005 .

[8]  S. Gwo,et al.  Direct evidence of 8: 9 commensurate heterojunction formed between InN and AlN on c plane , 2005 .

[9]  M. Shur,et al.  Electron transport in wurtzite indium nitride , 1998 .

[10]  M. Shur,et al.  Monte Carlo simulation of electron transport in wurtzite aluminum nitride , 1998 .

[11]  C. Poweleit,et al.  Observation of large electron drift velocities in InN by ultrafast Raman spectroscopy , 2005 .

[12]  Michael S. Shur,et al.  Steady-state electron transport in the III–V nitride semiconductors: A sensitivity analysis , 2003 .

[13]  M. Shur,et al.  Steady-State and Transient Electron Transport Within the III–V Nitride Semiconductors, GaN, AlN, and InN: A Review , 2006 .