On the spectrum of stiffness matrices arising from isogeometric analysis

We study the spectral properties of stiffness matrices that arise in the context of isogeometric analysis for the numerical solution of classical second order elliptic problems. Motivated by the applicative interest in the fast solution of the related linear systems, we are looking for a spectral characterization of the involved matrices. In particular, we investigate non-singularity, conditioning (extremal behavior), spectral distribution in the Weyl sense, as well as clustering of the eigenvalues to a certain (compact) subset of $$\mathbb C$$C. All the analysis is related to the notion of symbol in the Toeplitz setting and is carried out both for the cases of 1D and 2D problems.

[1]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[2]  Arno B. J. Kuijlaars,et al.  Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..

[3]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[4]  Larry Schumaker,et al.  Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .

[5]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[6]  Stefano Serra Capizzano,et al.  Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..

[7]  Larry L. Schumaker,et al.  Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.

[8]  H. V. D. Vorst,et al.  The rate of convergence of Conjugate Gradients , 1986 .

[9]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[10]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[11]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[12]  Dario Andrea Bini,et al.  Metodi Numerici per l'Algebra Lineare. , 1989 .

[13]  Seymour V. Parter,et al.  On the eigenvalues of certain generalisations of Toeplitz matrices , 1962 .

[14]  L. Hörmander,et al.  Pseudo-differential Operators and Non-elliptic Boundary Problems , 1966 .

[15]  Cristina Tablino Possio,et al.  Preconditioned Hermitian and Skew-Hermitian Splitting Method for Finite Element Approximations of Convection-Diffusion Equations , 2009, SIAM J. Matrix Anal. Appl..

[16]  Paolo Tilli,et al.  Locally Toeplitz sequences: spectral properties and applications , 1998 .

[17]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[18]  F. B. Ellerby,et al.  Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.

[19]  Stefano Serra Capizzano,et al.  Numerische Mathematik Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002 .

[20]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[21]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[22]  Leonid Golinskii,et al.  The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences , 2007, J. Approx. Theory.

[23]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[24]  Gene H. Golub,et al.  Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation , 2005, Numerische Mathematik.

[25]  Arno B. J. Kuijlaars,et al.  Superlinear CG convergence for special right-hand sides , 2002 .

[26]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[27]  Dario Bini,et al.  SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .

[28]  Stefano Serra Capizzano,et al.  Spectral and structural analysis of high precision finite difference matrices for elliptic operators , 1999 .

[29]  Arno B. J. Kuijlaars,et al.  On The Sharpness of an Asymptotic Error Estimate for Conjugate Gradients , 2001 .

[30]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[31]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .

[32]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[33]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[34]  Stefano Serra Capizzano,et al.  On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..

[35]  O. Axelsson,et al.  Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.

[36]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[37]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[38]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[39]  Xiaoliang Wan,et al.  Comput. Methods Appl. Mech. Engrg. , 2010 .

[40]  H. Widom,et al.  From Toeplitz Eigenvalues through Green’s Kernels to Higher-order Wirtinger-Sobolev Inequalities , 2004, math/0412269.

[41]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[42]  Seymour V. Parter,et al.  On the extreme eigenvalues of Toeplitz matrices , 1961 .

[43]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[44]  Seymour V. Parter On the extreme eigenvalues of truncated Toeplitz matrices , 1961 .

[45]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[46]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[47]  Giancarlo Sangalli,et al.  BPX-preconditioning for isogeometric analysis , 2013 .

[48]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[49]  Stefano Serra-Capizzano,et al.  ON THE ASYMPTOTIC SPECTRUM OF FINITE ELEMENT , 2007 .

[50]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[51]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[52]  Stefano Serra,et al.  Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems , 1994 .