On the spectrum of stiffness matrices arising from isogeometric analysis
暂无分享,去创建一个
Hendrik Speleers | Carla Manni | Stefano Serra Capizzano | Francesca Pelosi | Carlo Garoni | S. Capizzano | H. Speleers | C. Manni | F. Pelosi | C. Garoni
[1] A. Quarteroni. Numerical Models for Differential Problems , 2009 .
[2] Arno B. J. Kuijlaars,et al. Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..
[3] Giancarlo Sangalli,et al. Analysis-Suitable T-splines are Dual-Compatible , 2012 .
[4] Larry Schumaker,et al. Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .
[5] S. Serra Capizzano,et al. Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .
[6] Stefano Serra Capizzano,et al. Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..
[7] Larry L. Schumaker,et al. Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.
[8] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[9] Stefano Serra Capizzano,et al. V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..
[10] Stefano Serra-Capizzano,et al. The GLT class as a generalized Fourier analysis and applications , 2006 .
[11] Paolo Tilli,et al. A note on the spectral distribution of toeplitz matrices , 1998 .
[12] Dario Andrea Bini,et al. Metodi Numerici per l'Algebra Lineare. , 1989 .
[13] Seymour V. Parter,et al. On the eigenvalues of certain generalisations of Toeplitz matrices , 1962 .
[14] L. Hörmander,et al. Pseudo-differential Operators and Non-elliptic Boundary Problems , 1966 .
[15] Cristina Tablino Possio,et al. Preconditioned Hermitian and Skew-Hermitian Splitting Method for Finite Element Approximations of Convection-Diffusion Equations , 2009, SIAM J. Matrix Anal. Appl..
[16] Paolo Tilli,et al. Locally Toeplitz sequences: spectral properties and applications , 1998 .
[17] R. Tibshirani,et al. An introduction to the bootstrap , 1993 .
[18] F. B. Ellerby,et al. Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.
[19] Stefano Serra Capizzano,et al. Numerische Mathematik Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002 .
[20] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[21] Amara Lynn Graps,et al. An introduction to wavelets , 1995 .
[22] Leonid Golinskii,et al. The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences , 2007, J. Approx. Theory.
[23] G. Smith,et al. Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .
[24] Gene H. Golub,et al. Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation , 2005, Numerische Mathematik.
[25] Arno B. J. Kuijlaars,et al. Superlinear CG convergence for special right-hand sides , 2002 .
[26] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[27] Dario Bini,et al. SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .
[28] Stefano Serra Capizzano,et al. Spectral and structural analysis of high precision finite difference matrices for elliptic operators , 1999 .
[29] Arno B. J. Kuijlaars,et al. On The Sharpness of an Asymptotic Error Estimate for Conjugate Gradients , 2001 .
[30] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[31] Carla Manni,et al. Generalized B-splines as a tool in Isogeometric Analysis , 2011 .
[32] Hendrik Speleers,et al. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .
[33] J. Kraus,et al. Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.
[34] Stefano Serra Capizzano,et al. On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..
[35] O. Axelsson,et al. Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.
[36] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[37] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[38] O. Axelsson,et al. On the rate of convergence of the preconditioned conjugate gradient method , 1986 .
[39] Xiaoliang Wan,et al. Comput. Methods Appl. Mech. Engrg. , 2010 .
[40] H. Widom,et al. From Toeplitz Eigenvalues through Green’s Kernels to Higher-order Wirtinger-Sobolev Inequalities , 2004, math/0412269.
[41] U. Grenander,et al. Toeplitz Forms And Their Applications , 1958 .
[42] Seymour V. Parter,et al. On the extreme eigenvalues of Toeplitz matrices , 1961 .
[43] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[44] Seymour V. Parter. On the extreme eigenvalues of truncated Toeplitz matrices , 1961 .
[45] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[46] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[47] Giancarlo Sangalli,et al. BPX-preconditioning for isogeometric analysis , 2013 .
[48] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[49] Stefano Serra-Capizzano,et al. ON THE ASYMPTOTIC SPECTRUM OF FINITE ELEMENT , 2007 .
[50] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[51] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[52] Stefano Serra,et al. Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems , 1994 .