Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation
暂无分享,去创建一个
Nathan Wiebe | Victor Veitch | Christopher Ferrie | Joseph Emerson | J. Emerson | N. Wiebe | Victor Veitch | C. Ferrie
[1] Inadequacy of a classical interpretation of quantum projective measurements via Wigner functions , 2008, 0812.1830.
[2] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[3] Kae Nemoto,et al. Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.
[4] L. Ballentine. Quantum mechanics : a modern development , 1998 .
[5] E. Galvão. Discrete Wigner functions and quantum computational speedup , 2004, quant-ph/0405070.
[6] T. Asano,et al. Third emission mechanism in solid-state nanocavity quantum electrodynamics , 2012, Reports on progress in physics. Physical Society.
[7] R. Schack,et al. Classical model for bulk-ensemble NMR quantum computation , 1999, quant-ph/9903101.
[8] D. Browne,et al. Qutrit magic state distillation , 2012, 1202.2326.
[9] Barry C. Sanders,et al. Requirement for quantum computation , 2003 .
[10] Seth Lloyd,et al. Gaussian quantum information , 2011, 1110.3234.
[11] Scott Aaronson,et al. A linear-optical proof that the permanent is #P-hard , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[12] David Gross,et al. Non-negative Wigner functions in prime dimensions , 2007 .
[13] L. Mandel. Non-Classical States of the Electromagnetic Field , 1986 .
[14] S. Bochner. Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse , 1933 .
[15] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[16] Scott Aaronson,et al. Improved Simulation of Stabilizer Circuits , 2004, ArXiv.
[17] M. Bellini,et al. Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light , 2004, Science.
[18] Mark Howard,et al. Tight noise thresholds for quantum computation with perfect stabilizer operations. , 2009, Physical review letters.
[19] R. Werner,et al. Mixed states with positive Wigner functions , 1995 .
[20] Alessandro Zavatta,et al. Probing Quantum Commutation Rules by Addition and Subtraction of Single Photons to/from a Light Field , 2007, Science.
[21] Margarita A. Man’ko,et al. Journal of Optics B: Quantum and Semiclassical Optics , 2003 .
[22] W. Marsden. I and J , 2012 .
[23] K. Życzkowski,et al. Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.
[24] A. Datta,et al. Entanglement and the power of one qubit , 2005, quant-ph/0505213.
[25] Gregory W. Moore,et al. Nonabelions in the fractional quantum Hall effect , 1991 .
[26] Robert W Spekkens,et al. Negativity and contextuality are equivalent notions of nonclassicality. , 2006, Physical review letters.
[27] R. Hudson. When is the wigner quasi-probability density non-negative? , 1974 .
[28] Ben Reichardt,et al. Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..
[29] Scott Aaronson,et al. Guest Column: NP-complete problems and physical reality , 2005, SIGA.
[30] Barry C Sanders,et al. Efficient classical simulation of optical quantum information circuits. , 2002, Physical review letters.
[31] Necessity of negativity in quantum theory , 2009, 0910.3198.
[32] Christopher Ferrie,et al. Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.
[33] J. Preskill,et al. Encoding a qubit in an oscillator , 2000, quant-ph/0008040.
[34] J. Bell,et al. Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .
[35] B. Dickinson,et al. The complexity of analog computation , 1986 .
[36] Wim van Dam,et al. Noise thresholds for higher-dimensional systems using the discrete Wigner function , 2010, 1011.2497.
[37] Jonathan P. Marangos. Journal of Modern Optics celebrates 50 years of the laser , 2010 .
[38] M. Horodecki,et al. Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.
[39] Seth Lloyd,et al. Quantum Computation over Continuous Variables , 1999 .
[40] Hugo Cable,et al. Bipartite entanglement in continuous variable cluster states , 2010, 1008.4855.
[41] J. Emerson,et al. Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.
[42] E. Knill,et al. Power of One Bit of Quantum Information , 1998, quant-ph/9802037.
[43] T. Ralph,et al. Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.
[44] D. Gross,et al. Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.
[45] Christopher Ferrie,et al. Framed Hilbert space: hanging the quasi-probability pictures of quantum theory , 2009, 0903.4843.
[46] Earl T. Campbell,et al. On the Structure of Protocols for Magic State Distillation , 2009, TCQ.
[47] B. M. Fulk. MATH , 1992 .
[48] E. Wolf,et al. Some nonclassical features of phase-space representations of quantum mechanics , 1975 .
[49] Julien Vidal,et al. Pairing of Cooper pairs in a fully frustrated Josephson-junction chain. , 2002, Physical review letters.
[50] W. Schleich. Quantum Optics in Phase Space: SCHLEICH:QUANTUM OPTICS O-BK , 2005 .
[51] N. C. Menicucci,et al. Quantum Computing with Continuous-Variable Clusters , 2009, 0903.3233.
[52] P. Claverie,et al. When is the Wigner function of multidimensional systems nonnegative , 1983 .
[53] Christopher Ferrie,et al. Quasi-probability representations of quantum theory with applications to quantum information science , 2010, 1010.2701.
[54] Earl T. Campbell,et al. Catalysis and activation of magic states in fault-tolerant architectures , 2010, 1010.0104.
[55] E. Wigner. On the quantum correction for thermodynamic equilibrium , 1932 .
[56] Discrete phase space based on finite fields , 2004, quant-ph/0401155.
[57] Agarwal,et al. Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[58] Alessandro Zavatta,et al. Experimental nonclassicality of single-photon-added thermal light states , 2007, 0704.0179.
[59] J Eisert,et al. Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.
[60] D. Gross. Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.
[61] Bryan Eastin,et al. Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.
[62] Habib,et al. Reduction of the wave packet: Preferred observable and decoherence time scale. , 1993, Physical review. D, Particles and fields.
[63] D. Browne,et al. Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.
[64] Stephen D. Bartlett,et al. Non-negative subtheories and quasiprobability representations of qubits , 2012, 1203.2652.
[65] Andrew W. Cross,et al. Subsystem stabilizer codes cannot have a universal set of transversal gates for even one encoded qudit , 2008, 0801.2360.
[66] L. Ballentine,et al. Quantum mechanics , 1989 .
[67] D. Browne,et al. Bound states for magic state distillation in fault-tolerant quantum computation. , 2009, Physical review letters.
[68] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[69] J. Eisert,et al. Limitations of quantum computing with Gaussian cluster states , 2010, 1004.0081.