Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation

We provide a scheme for efficient simulation of a broad class of quantum optics experiments. Our efficient simulation extends the continuous variable Gottesman–Knill theorem to a large class of non-Gaussian mixed states, thereby demonstrating that these non-Gaussian states are not an enabling resource for exponential quantum speed-up. Our results also provide an operationally motivated interpretation of negativity as non-classicality. We apply our scheme to the case of noisy single-photon-added-thermal-states to show that this class admits states with positive Wigner function but negative P-function that are not useful resource states for quantum computation.

[1]  Inadequacy of a classical interpretation of quantum projective measurements via Wigner functions , 2008, 0812.1830.

[2]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[3]  Kae Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.

[4]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[5]  E. Galvão Discrete Wigner functions and quantum computational speedup , 2004, quant-ph/0405070.

[6]  T. Asano,et al.  Third emission mechanism in solid-state nanocavity quantum electrodynamics , 2012, Reports on progress in physics. Physical Society.

[7]  R. Schack,et al.  Classical model for bulk-ensemble NMR quantum computation , 1999, quant-ph/9903101.

[8]  D. Browne,et al.  Qutrit magic state distillation , 2012, 1202.2326.

[9]  Barry C. Sanders,et al.  Requirement for quantum computation , 2003 .

[10]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[11]  Scott Aaronson,et al.  A linear-optical proof that the permanent is #P-hard , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  David Gross,et al.  Non-negative Wigner functions in prime dimensions , 2007 .

[13]  L. Mandel Non-Classical States of the Electromagnetic Field , 1986 .

[14]  S. Bochner Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse , 1933 .

[15]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[16]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[17]  M. Bellini,et al.  Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light , 2004, Science.

[18]  Mark Howard,et al.  Tight noise thresholds for quantum computation with perfect stabilizer operations. , 2009, Physical review letters.

[19]  R. Werner,et al.  Mixed states with positive Wigner functions , 1995 .

[20]  Alessandro Zavatta,et al.  Probing Quantum Commutation Rules by Addition and Subtraction of Single Photons to/from a Light Field , 2007, Science.

[21]  Margarita A. Man’ko,et al.  Journal of Optics B: Quantum and Semiclassical Optics , 2003 .

[22]  W. Marsden I and J , 2012 .

[23]  K. Życzkowski,et al.  Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.

[24]  A. Datta,et al.  Entanglement and the power of one qubit , 2005, quant-ph/0505213.

[25]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[26]  Robert W Spekkens,et al.  Negativity and contextuality are equivalent notions of nonclassicality. , 2006, Physical review letters.

[27]  R. Hudson When is the wigner quasi-probability density non-negative? , 1974 .

[28]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[29]  Scott Aaronson,et al.  Guest Column: NP-complete problems and physical reality , 2005, SIGA.

[30]  Barry C Sanders,et al.  Efficient classical simulation of optical quantum information circuits. , 2002, Physical review letters.

[31]  Necessity of negativity in quantum theory , 2009, 0910.3198.

[32]  Christopher Ferrie,et al.  Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.

[33]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[34]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .

[35]  B. Dickinson,et al.  The complexity of analog computation , 1986 .

[36]  Wim van Dam,et al.  Noise thresholds for higher-dimensional systems using the discrete Wigner function , 2010, 1011.2497.

[37]  Jonathan P. Marangos Journal of Modern Optics celebrates 50 years of the laser , 2010 .

[38]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[39]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[40]  Hugo Cable,et al.  Bipartite entanglement in continuous variable cluster states , 2010, 1008.4855.

[41]  J. Emerson,et al.  Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.

[42]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[43]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[44]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[45]  Christopher Ferrie,et al.  Framed Hilbert space: hanging the quasi-probability pictures of quantum theory , 2009, 0903.4843.

[46]  Earl T. Campbell,et al.  On the Structure of Protocols for Magic State Distillation , 2009, TCQ.

[47]  B. M. Fulk MATH , 1992 .

[48]  E. Wolf,et al.  Some nonclassical features of phase-space representations of quantum mechanics , 1975 .

[49]  Julien Vidal,et al.  Pairing of Cooper pairs in a fully frustrated Josephson-junction chain. , 2002, Physical review letters.

[50]  W. Schleich Quantum Optics in Phase Space: SCHLEICH:QUANTUM OPTICS O-BK , 2005 .

[51]  N. C. Menicucci,et al.  Quantum Computing with Continuous-Variable Clusters , 2009, 0903.3233.

[52]  P. Claverie,et al.  When is the Wigner function of multidimensional systems nonnegative , 1983 .

[53]  Christopher Ferrie,et al.  Quasi-probability representations of quantum theory with applications to quantum information science , 2010, 1010.2701.

[54]  Earl T. Campbell,et al.  Catalysis and activation of magic states in fault-tolerant architectures , 2010, 1010.0104.

[55]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[56]  Discrete phase space based on finite fields , 2004, quant-ph/0401155.

[57]  Agarwal,et al.  Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[58]  Alessandro Zavatta,et al.  Experimental nonclassicality of single-photon-added thermal light states , 2007, 0704.0179.

[59]  J Eisert,et al.  Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.

[60]  D. Gross Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.

[61]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[62]  Habib,et al.  Reduction of the wave packet: Preferred observable and decoherence time scale. , 1993, Physical review. D, Particles and fields.

[63]  D. Browne,et al.  Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.

[64]  Stephen D. Bartlett,et al.  Non-negative subtheories and quasiprobability representations of qubits , 2012, 1203.2652.

[65]  Andrew W. Cross,et al.  Subsystem stabilizer codes cannot have a universal set of transversal gates for even one encoded qudit , 2008, 0801.2360.

[66]  L. Ballentine,et al.  Quantum mechanics , 1989 .

[67]  D. Browne,et al.  Bound states for magic state distillation in fault-tolerant quantum computation. , 2009, Physical review letters.

[68]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[69]  J. Eisert,et al.  Limitations of quantum computing with Gaussian cluster states , 2010, 1004.0081.