Tensor completion throughmultiple Kronecker product decomposition

We propose a novel decomposition approach to impute missing values in tensor data. The method uses smaller scale multiway patches to model the whole data or a small volume encompassing the observed missing entries. Simulations on color images show that our method can recover color images using only 5-10% of pixels, and outperforms other available tensor completion methods.

[1]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[2]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[3]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[4]  Andrzej Cichocki,et al.  Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[5]  Stefan Ragnarsson-Torbergsen Structured Tensor Computations: Blocking, Symmetries And Kronecker Factorizations , 2012 .

[6]  Chih-Jen Lin,et al.  Projected Gradient Methods for Nonnegative Matrix Factorization , 2007, Neural Computation.

[7]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[8]  Petros Drineas,et al.  Tensor-CUR Decompositions for Tensor-Based Data , 2008, SIAM J. Matrix Anal. Appl..

[9]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[10]  M. Daube-Witherspoon,et al.  An Iterative Image Space Reconstruction Algorthm Suitable for Volume ECT , 1986, IEEE Transactions on Medical Imaging.

[11]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[12]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[13]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Andrzej Cichocki,et al.  On Revealing Replicating Structures in Multiway Data: A Novel Tensor Decomposition Approach , 2012, LVA/ICA.

[15]  Zbynek Koldovský,et al.  Cramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition , 2012, IEEE Transactions on Signal Processing.

[16]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[17]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[18]  H. Lantéri,et al.  COMPARISON BETWEEN ISRA AND RLA ALGORITHMS. USE OF A WIENER FILTER BASED STOPPING CRITERION , 1999 .

[19]  Tamara G. Kolda,et al.  Scalable Tensor Factorizations for Incomplete Data , 2010, ArXiv.

[20]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[21]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[22]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[23]  R. Bro,et al.  PARAFAC and missing values , 2005 .

[24]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[25]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[26]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[27]  C. Loan,et al.  Approximation with Kronecker Products , 1992 .

[28]  Misha Elena Kilmer,et al.  Kronecker product approximation for preconditioning in three-dimensional imaging applications , 2006, IEEE Transactions on Image Processing.

[29]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[30]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[31]  Charles F. Loan,et al.  Structured tensor computations: blocking, symmetries and kronecker factorizations , 2012 .

[32]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[33]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[34]  Abderrahman Bouhamidi,et al.  A Kronecker approximation with a convex constrained optimization method for blind image restoration , 2012, Optim. Lett..