The Binet-Legendre Metric in Finsler Geometry

For every Finsler metric F we associate a Riemannian metric gF (called the Binet‐ Legendre metric). The Riemannian metric gF behaves nicely under conformal deformation of the Finsler metric F , which makes it a powerful tool in Finsler geometry. We illustrate that by solving a number of named Finslerian geometric problems. We also generalize and give new and shorter proofs of a number of known results. In particular we answer a question of M Matsumoto about local conformal mapping between two Minkowski spaces, we describe all possible conformal self maps and all self similarities on a Finsler manifold. We also classify all compact conformally flat Finsler manifolds, we solve a conjecture of S Deng and Z Hou on the Berwaldian character of locally symmetric Finsler spaces, and extend a classic result by H C Wang about the maximal dimension of the isometry groups of Finsler manifolds to manifolds of all dimensions. Most proofs in this paper go along the following scheme: using the correspondence F 7! gF we reduce the Finslerian problem to a similar problem for the Binet‐ Legendre metric, which is easier and is already solved in most cases we consider. The solution of the Riemannian problem provides us with the additional information that helps to solve the initial Finslerian problem. Our methods apply even in the absence of the strong convexity assumption usually assumed in Finsler geometry. The smoothness hypothesis can also be replaced by a weaker partial smoothness, a notion we introduce in the paper. Our results apply therefore to a vast class of Finsler metrics not usually considered in the Finsler literature.

[1]  Wolfgang Hackbusch Ordinary Differential Equations , 2014 .

[2]  R. L. Lovas,et al.  Homotheties of Finsler manifolds∗ , 2009, SUT Journal of Mathematics.

[3]  V. Matveev Riemannian metrics having common geodesics with Berwald metrics , 2008, Publicationes Mathematicae Debrecen.

[4]  M. Troyanov,et al.  Harmonic symmetrization of convex sets and of Finsler structures, with applications to Hilbert geometry , 2008, 0807.0335.

[5]  M. Troyanov,et al.  Finsler Conformal Lichnerowicz-Obata conjecture , 2008, 0802.3309.

[6]  S. Sabau,et al.  Finsler geometry, Sapporo 2005 : in memory of Makoto Matsumoto , 2007 .

[7]  Chang-Wan Kim Locally symmetric positively curved Finsler spaces , 2007 .

[8]  Z. Szabó Berwald metrics constructed by Chevalley's polynomials , 2006, math/0601522.

[9]  E. Lutwak,et al.  Lp John Ellipsoids , 2005 .

[10]  D. Bao,et al.  Zermelo navigation on Riemannian manifolds , 2003, math/0311233.

[11]  Shaoqiang Deng,et al.  The group of isometries of a Finsler space , 2002 .

[12]  M. Matsumoto Conformally Berwald and conformally flat Finsler spaces , 2001, Publicationes Mathematicae Debrecen.

[13]  E. Lutwak,et al.  A new ellipsoid associated with convex bodies , 2000 .

[14]  D. Bao,et al.  An Introduction to Riemann-Finsler Geometry , 2000 .

[15]  P. Foulon Locally symmetric Finsler spaces in negative curvature , 1997 .

[16]  R. Schoen,et al.  On the conformal and CR automorphism groups , 1995 .

[17]  S. Yau,et al.  Conformally flat manifolds, Kleinian groups and scalar curvature , 1988 .

[18]  V. Berestovskii Generalized symmetric spaces , 1985 .

[19]  I. Vaisman,et al.  Local similarity manifolds , 1983 .

[20]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[21]  David Fried Closed similarity manifolds , 1980 .

[22]  R. Kulkarni Conformally flat manifolds. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Alekseevskii GROUPS OF CONFORMAL TRANSFORMATIONS OF RIEMANNIAN SPACES , 1972 .

[24]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[25]  J. Simons On transitivity of holonomy systems , 1962 .

[26]  C. Petty Surface area of a convex body under affine transformations , 1961 .

[27]  S. Ishihara Homogeneous Riemannian spaces of four dimensions. , 1955 .

[28]  K. Yano On $n$-dimensional Riemannian spaces admitting a group of motions of order $n(n-1)/2+1$ , 1953 .

[29]  Georges de Rham,et al.  Sur la réductibilité d'un espace de Riemann , 1952 .

[30]  D. Montgomery,et al.  Transformation Groups of Spheres , 1943 .

[31]  H. Busemann,et al.  On the foundations of calculus of variations , 1941 .

[32]  F. John Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .

[33]  Shaoqiang Deng Symmetric Finsler Spaces , 2012 .

[34]  D. Bao On two curvature-driven problems in Riemann–Finsler geometry , 2007 .

[35]  Shaoqiang Deng,et al.  Homogeneous Finsler spaces of negative curvature , 2007 .

[36]  Csaba Vincze A NEW PROOF OF SZAB´ O'S THEOREM ON THE RIEMANN-METRIZABILITY OF BERWALD MANIFOLDS , 2005 .

[37]  Shiing-Shen Chern,et al.  Riemann-Finsler geometry , 2005 .

[38]  Z. Szabó A NEW PROOF OF SZABÓ’S THEOREM ON THE RIEMANN-METRIZABILITY OF BERWALD MANIFOLDS , 2005 .

[39]  A. C. Thompson,et al.  Volumes on Normed and Finsler Spaces , 2004 .

[40]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[41]  P. Centore VOLUME FORMS IN FINSLER SPACES , 1999 .

[42]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[43]  K. Ball An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .

[44]  J. Ferrand The action of conformal transformations on a Riemannian manifold , 1996 .

[45]  P. Planche Structures de Finsler invariantes sur les espaces symétriques , 1995 .

[46]  Richard A. Mould Differential Geometry I , 1994 .

[47]  S. Matsumoto Foundations of Flat Conformal Structure , 1992 .

[48]  松本 幸夫,et al.  Aspects of low dimensional manifolds , 1992 .

[49]  S. Chern Local Equivalence and Euclidean Connections in Finsler Spaces , 1989 .

[50]  V. Milman,et al.  Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .

[51]  H. Busemann,et al.  Two theorems on general symmetric spaces , 1981 .

[52]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[53]  矢野 健太郎,et al.  Differential geometry; in honor of Kentaro Yano , 1972 .

[54]  A. Legendre Traité des fonctions elliptiques et des intégrales Eulériennes, avec des tables pour en faciliter le cacul numérique , 1970 .

[55]  M. Berger Sur les groupes d'holonomie homogènes de variétés à connexion affine et des variétés riemanniennes , 1955 .

[56]  Herbert Busemann,et al.  The geometry of geodesics , 1955 .

[57]  H. Busemann The geometry of Finsler spaces , 1950 .

[58]  Hsien-chung Wang On Finsler Spaces with Completely Integrable Equations of Killing , 1947 .

[59]  H. Busemann,et al.  Intrinsic Area. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[60]  and as an in , 2022 .