Metagenomic Analysis of the Indian Ocean Picocyanobacterial Community: Structure, Potential Function and Evolution

Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the genera Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin (apcAB), phycocyanin (cpcAB) and phycoerythin (cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. Comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.

[1]  F. Thompson,et al.  Niche distribution and influence of environmental parameters in marine microbial communities: a systematic review , 2015, PeerJ.

[2]  Luis Pedro Coelho,et al.  Structure and function of the global ocean microbiome , 2015, Science.

[3]  Luke R. Thompson,et al.  Physiology and evolution of nitrate acquisition in Prochlorococcus , 2014, The ISME Journal.

[4]  J. Raven,et al.  A Neoproterozoic Transition in the Marine Nitrogen Cycle , 2014, Current Biology.

[5]  S. Yooseph,et al.  Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea , 2014, The ISME Journal.

[6]  Anders F. Andersson,et al.  Functional Tradeoffs Underpin Salinity-Driven Divergence in Microbial Community Composition , 2014, PloS one.

[7]  B. Díez,et al.  Epiphytic cyanobacteria of the seagrass Cymodocea rotundata: diversity, diel nifH expression and nitrogenase activity. , 2013, Environmental microbiology reports.

[8]  Jasper A. Vrugt,et al.  Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus , 2013, Proceedings of the National Academy of Sciences.

[9]  D. R. Johnson,et al.  The World Ocean Database , 2013, Data Sci. J..

[10]  Shibu Yooseph,et al.  Metagenomic Exploration of Viruses throughout the Indian Ocean , 2012, PloS one.

[11]  Genetic Identification of a High-Affinity Ni Transporter and the Transcriptional Response to Ni Deprivation in Synechococcus sp. Strain WH8102 , 2012, Applied and Environmental Microbiology.

[12]  F. Chen,et al.  Novel lineages of Prochlorococcus and Synechococcus in the global oceans , 2011, The ISME Journal.

[13]  A. Bekker,et al.  Widespread iron-rich conditions in the mid-Proterozoic ocean , 2011, Nature.

[14]  B. Bergman,et al.  Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits , 2011, BMC Evolutionary Biology.

[15]  P. Strutton,et al.  A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean , 2011, The ISME Journal.

[16]  Peer Bork,et al.  Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy , 2011, Nucleic Acids Res..

[17]  Ramón Doallo,et al.  ProtTest 3: fast selection of best-fit models of protein evolution , 2011, Bioinform..

[18]  T. Lyimo Distribution and abundance of the cyanobacterium Richelia intracellularis in the coastal waters of Tanzania , 2011 .

[19]  Shibu Yooseph,et al.  Genomic and functional adaptation in surface ocean planktonic prokaryotes , 2010, Nature.

[20]  C. Herrmann,et al.  CpeS Is a Lyase Specific for Attachment of 3Z-PEB to Cys82 of β-phycoerythrin from Prochlorococcus marinus MED4* , 2010, The Journal of Biological Chemistry.

[21]  Ramón Doallo,et al.  ProtTest-HPC: Fast Selection of Best-Fit Models of Protein Evolution , 2010, Euro-Par Workshops.

[22]  Johannes Goll,et al.  Bioinformatics Applications Note Database and Ontologies Metarep: Jcvi Metagenomics Reports—an Open Source Tool for High-performance Comparative Metagenomics , 2022 .

[23]  Douglas B Rusch,et al.  Characterization of Prochlorococcus clades from iron-depleted oceanic regions , 2010, Proceedings of the National Academy of Sciences.

[24]  S. Chisholm,et al.  Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans , 2010, The ISME Journal.

[25]  S. Kravitz,et al.  The JCVI standard operating procedure for annotating prokaryotic metagenomic shotgun sequencing data , 2010, Standards in genomic sciences.

[26]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[27]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[28]  S. Golubić,et al.  Dinitrogen-Fixing Cyanobacteria in Microbial Mats of Two Shallow Coral Reef Ecosystems , 2009, Microbial Ecology.

[29]  Thomas S. Bibby,et al.  Biogeography of Photosynthetic Light-Harvesting Genes in Marine Phytoplankton , 2009, PloS one.

[30]  Lawrence A. David,et al.  Resource Partitioning and Sympatric Differentiation Among Closely Related Bacterioplankton , 2008, Science.

[31]  Patrick D Schloss,et al.  Evaluating different approaches that test whether microbial communities have the same structure , 2008, The ISME Journal.

[32]  B. Díez,et al.  Variability in benthic diazotrophy and cyanobacterial diversity in a tropical intertidal lagoon. , 2008, FEMS microbiology ecology.

[33]  Martin Ostrowski,et al.  Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study , 2007, Genome Biology.

[34]  C. Dupont,et al.  Ni Uptake and Limitation in Marine Synechococcus Strains , 2007, Applied and Environmental Microbiology.

[35]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[36]  H. Bouman,et al.  Oceanographic Basis of the Global Surface Distribution of Prochlorococcus Ecotypes , 2006, Science.

[37]  R. Murtugudde,et al.  Annual ecosystem variability in the tropical Indian Ocean: Results of a coupled bio-physical ocean general circulation model , 2006 .

[38]  E. Delong,et al.  Community Genomics Among Stratified Microbial Assemblages in the Ocean's Interior , 2006, Science.

[39]  Timothy P. Boyer,et al.  World ocean database 2009 , 2006 .

[40]  W. Hess,et al.  A green light-absorbing phycoerythrin is present in the high-light-adapted marine cyanobacterium Prochlorococcus sp. MED4. , 2005, Environmental microbiology.

[41]  Keith Lindsay,et al.  Upper ocean ecosystem dynamics and iron cycling in a global three‐dimensional model , 2004 .

[42]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[43]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[44]  B. Bergman,et al.  Trichodesmium in coastal waters of Tanzania: diversity, seasonality, nitrogen and carbon fixation , 2002, Hydrobiologia.

[45]  W. Hess,et al.  Expression and phylogeny of the multiple antenna genes of the low-light-adapted strain Prochlorococcus marinus SS120 (Oxyphotobacteria) , 2001, Plant Molecular Biology.

[46]  B. Mitchell,et al.  Phytoplankton blooms in the vicinity of palmer station, Antarctica , 1989, Polar Biology.

[47]  R. Chomko,et al.  SeaWiFS observations of the Arabian Sea southwest monsoon bloom for the year 2000 , 2004 .

[48]  J. Barber,et al.  Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem , 2003, Nature.

[49]  W. Hess,et al.  Analysis of natural populations of Prochlorococcus spp. in the northern Red Sea using phycoerythrin gene sequences. , 2003, Environmental microbiology.

[50]  Lisa R. Moore,et al.  Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus , 2002 .

[51]  S. Chisholm,et al.  Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. , 2002, Trends in microbiology.

[52]  B. Palenik Chromatic Adaptation in MarineSynechococcus Strains , 2001, Applied and Environmental Microbiology.

[53]  F. Schott,et al.  The monsoon circulation of the Indian Ocean , 2001 .

[54]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[55]  Paul G. Falkowski,et al.  Bio‐optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and photosynthetic action spectra , 1999 .

[56]  P. Falkowski,et al.  Bio‐optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. II. A reflectance model for remote sensing , 1999 .

[57]  P. Gustafsson,et al.  Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by protecting photosystem II from excess light under iron limitation , 1999, Molecular microbiology.

[58]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[59]  E. Carpenter,et al.  An extensive bloom of the N2-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea , 1998 .

[60]  S. Chisholm,et al.  Rapid Diversification of Marine Picophytoplankton with Dissimilar Light-Harvesting Structures Inferred from Sequences of Prochlorococcus and Synechococcus (Cyanobacteria) , 1998, Journal of Molecular Evolution.

[61]  R. Haselkorn,et al.  Multiple evolutionary origins of prochlorophytes, the chlorophyllb-containing prokaryotes , 1992, Nature.

[62]  Bernard R. Baum,et al.  Book Review:PHYLIP: Phylogeny Inference Package. Version 3.2. Joel Felsenstein , 1989 .